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Bases and basic sequences in I'-spaces
by

N.J. KALTON (Swansea, Wales, U.K.) and J. H. SHAPIRO (East Lansing)*

Abstract. This paper is concerned with the theory of Schauder bases in non-
locally convex F-spaces. We first give some resulte on the existence problem for basic
sequences, extending work of the first author (Basic sequences in F-spaces and their
applications, Proc. Edinburgh Math. Soc. to appear). In partieular it is shown that
the existence of & basic sequence in every infinite-dimensional closed linear subspace
of an F-space is equivalent to an extension property for linear functionals. Then we
introduce two new clagses of F-spaces, which we call pseudo-TFréchet and pseudo-
reflexive spaces. For example, an F-space is pseudo-reflexive if every bounded set
is relatively compact in the weak topology of its closed linear span. We give criteria
for spaces with bases to be psendo-Fréchet and pseudo-reflexive and hence are able
to give non-locally convex examples. Tsing these examples we show the existence of
non-locally convex F.spaces on which there exist strictly weaker vector topologies
which define the same closed subspaces as the original topology.

1. Introduction. In this paper we continue the study begun by the
first author in [1] of basic sequences in F-spaces, with the emphasis
on non-locally convex spaces. In §2 we restate in a more accurate form
the main result from [1} on constructing basic sequences, and derive
<ome variations on this result. Tt is not known if every F-space contains
a bagic sequence. §3 contains some contributions to this existence problem.
The last section of the paper treats two new classes of F-spaces. We eall
an F-space pseudo-Fréchet if the weak topology of each linear subspace
coincides on bounded sets with the weak topology of the whole space.
We call an F-space pseudo-reflexive if the weak topology is Hausdorff,
and every bounded subset is relatively compact in the weak topology
of its closed linear span. It turns out that every pseudo-reflexive F-space
is psendo-Fréchet, and a Fréchet space (locally convex F-space) is pseudo-
reflexive if and only if it is reflexive. We give criteria for spaces to be
pseudo-Fréchet or psendo-reflexive which involve shrinking and bound-
edly complete basic sequences; and we use these results to construct

* Research of the second author was partially supported by National Seience
Foundation grant GP-33695.
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examples of mnon-locally convex pseudo-Fréchet and psendo-reflexive
spaces. Finally, we show that the bounded weak topology of a locally
bounded, pseudo-reflexive F-space is compatible with (i.e., haz the same
closed subspaces as) the original topology. This provides examples of
non-Jocally convex F-spaces which have topologies strictly weaker than,
vet compatible with, the original ones; and gives non-locally convex
applications of some of the results in §5 of [1L

We wish to thank Professor A. Pelezynski for suggesting to us the
examples used in §4.

9. Basic results. First we recall some definitions. Let (E, 7) be an
F-space; then a sequence {x,} is semi-basic ([1]) if for each n, we have
#,d in(@, . 1s Tyogs ---). As observed in [1] we can then define continuous
linear functionals {f,} on the space H, = lin(z,: neA") such that Sl
= §,. If we further have that for we E,, f.(x) = 0 for all ne 4 implies
that » = 0, then (a,) is a Markushevich basis of g, and we shall then

o0
say that (z,) is an M-basic sequence in H. Finally, if for we Hy, 2 = ) fo(2)z,
then (z,) is a basic sequence n E. n=t

If p is another Hausdorff vector topology on F we shall say that 7
is g-polar if 7 has a base of g-closed neighbourhoods of 0, and 7 18 g-com-
patible if every z-closed linear subspace of E is also g-closed. It is shown
in [1] that if = is g-compatible then v is g-polar. A net (4,: aed) in B
is T-regular if there is a neighbourhood V of 0 such that Yy, ¢V for all aeA.

In Theorem 2.1 below we restate the main existence theorem for
basic sequences from {13. Part (ii) is a more accurate formulation of
Corollary 3.4 of [1], for it asserts the existence of an M-basie sequence
rather than simply a semi-basic sequence. It is clear that the proof of
Corollary 3.4 yields this extra information, as the sequence obtained is
a basic sequence for a topology on E which iz weaker than 7.

TneorEM 2.1. Let (E, 7} be an F-space and let o be a H ausdorff vector
topology on B with ¢ < v. Suppose (%1 aed) is & 7-regular net which con-
verges 1o 0 in o and suppose zye B with 2z, # 0.

(i) Suppose v is g-polar. Then there is an increasing sequence (a(n):
n = 2) such that if 2, = Gy, W= 2, then (z,: ne A7) 18 @ basic sequence
wn (I, 7).

(i) In general,if v is not g-polar, there is an TRCTEAsing sequence (a(%):
n = 2) such that if z, == Ty, ® = 2 then (2,: ne A7) is an M-basic sequence
i (K, 7).

Tn this section we modify this result by giving another condition
under which basic sequences may be constructed. A sequence {x,) 1s
of type P* if there is a continuous linear functional ¢ on lin(z,: ne A}
such that ¢(z,) =1 for all n.
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LEMMA 2.2, Let (2,) be a sequence of lype P* and suppose thal u¢
lin (2 ne A7) If () is basic (vesp. M-basic; resp. semi-basie). then (u-+x,)
es basic (resp. M-basic; resp. semi-basic).

Proof. Suppose (x,) is semi-basic, and that there are continuous
linear functionals (f,) on imiwﬁ(a?n) such that f;(#;) = 6;. Let ¢ be a con-
tinuous linear functional oniﬂl(wn) such that ¢(2,) =1 for all n. Let X
be the spaeeﬁ?i( Z, 5 1), and extend f, and ¢ to continuots linear functionals
Jn 2nd @ defined on X such that f,(u) = @#(u) = 0. Also let v be the linear
functional defined on X such that w(u) = 1 and y(lin(z,)) = 0. Then v
is a continuous function as »7*(0) is closed.

Now fi(u+a;) = &, so that (u-+a,) is semi-basic. Suppose, in
addition, (x,) is M-basic and zelin(u-+2,). Then p(u-+m,) = ¢(u-+z,)
for all #, and hence y(x) = #(x). However, @ = au -~y where yei—i.ﬂ(mn)
and so a = ¢(y). If f,(x) = 0 for all ne 4", then f,(y) = 0 for all n and
hence y = 0. Therefore a = 0 and # = 0, i.e., (u-,) is M-basic.

Finally, if (x,) is basic then

T — _Sf ey (u+a) = [a* jfa‘(?!)] U+ (?f - Zj:fi(y)m{)'

Then
DIy =¢() =a

since ye@(ﬁ,t) and {@,) is a basic sequence. Also > f;(¥)z; = y. Hence

o0

Zfz(aj) (’éﬂ+g;i) .

i=1
and {u#-+x,) 13 a basic sequence.

THEOREM 2.3. Let (B, 7) be an F-space and suppose p < visa H ausdorff
vector topology on . Suppose (x,: aed) is a o-Cauchy net in H. Suppose
cither that (w,) converges in o to some ¢ ﬁg(wa: aed) or that (z,) does not
converge in o. Then

(1) there is an increasing sequence a(n) such that (Zapy) s an M-basic
sequence;

(it) 4f v is p-polar, there s an increasing sequence such that (Zmy) 48
a basic sequence.

Proof. First suppose (z,) converges to some w¢lin{z,: aed). Then
by Theorem 2.1 theve is an increasing sequence {a(n): # > 2} such that
i 2, = @y, —u for w1 then (z,) is M-basic (or basic if 7 is p-polar).
There is a continuous linear functional ¢ on lin(x,; ) such that ¢(u) = —1

i -~ Biudia Malhemaiica VI3
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but ¢(2,) = 0 for acA. Then ¢(z,) = 1 for n > 1 and 50 (z,) is of type P~

By Lemma 2.2, u--%, = @y, is M-basic (or basic if 7 is e-polar).
Next suppose (z,: acd) does not converge. Let (#,0) be the com-

pletion of (E, ¢) and ¥ <« % be the linear span of ¥ and 4 = limg,. For (i)

[+
we extend 7 to a topology 7 on ¥ so that ¥ = E@® lin(y), and apply the
preceding proof. For (ii) suppose (V) is a base of balanced g-closed r-neigh-
bourhoods of 0 satisfying V, .1+ Vas: © V,. Let W, be the closure of V,
in (¥, 3). If each W, is absorbent in ¥, then (W,) defines a o -polar topol-
ogy 7 on Y which extends v (cf. Theorem 5.7 of [1]) and again we may

apply the earlier proof. Otherwise | AW, 7= ¥, and then since W, .,+
A0

4+ Woe < W, }J&Wn .1 = B, in particnlar W,,, = E. Thus W, = Vie

, >0

for m > n. If we define U,, = W, -+ {iu: [A] < 27™}, then (U,,) defines

a topology 7 on ¥ which is ¢-pelar and © = v on F (since for k> =,

U.NE = V,). Again we apply the earlier proof.

3. The existence problem. An F-space E is called minimal if there
is no strictly weaker Hausdorff vector topology on %. It is shown in [1]
that o, the space of all sequences, is a minimal space; however it is not
. known whether there are other examples. This problem is ceniral to the
problem of finding basic sequences in any F-space. In [5], Peck considers
the space BM[0,1} of measurable functions on [0, 1] with the F-norm

2 ()]

[lel] mg Tl

and shows that M[0,17] is not a minimal space. His method of proof
yields the following result:

PropositioN 3.1. Let (B, 7) be a minimal F-space and suppose (x,)
is an M-basic sequence in E. Then (x,) is a basic sequence equivalent to the
usual basis of o. '

[Two basic sequences (z,) and (;y,,&) are equivalent if } a,u, converges
if and only if ) a,y, converges.]

Proof. Let I, = lin(x,: k> n) and define a vector topology Z with
a base of neighbourhoods of 0 of the form L, -+ U, where U is a z-neigh-
bourhood of 0. Then

@(Ln"i" U) =0 Q-(Ln-%w U) = (ML, = {0}

since (x,) is M-basic. Therefore A is Hausdorff and as 1< 7 we conclude
2 = r. For any sequence (t,) of scalars we have

"m

Ztkwks L,+TU

n+i
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for any v-neighbourhood U. Hence ' @, converges for any scalar se-
quence, and it follows that (x,) is a basic sequence equivalent to the
usual basis of . L

An M-basic sequence will be called sltrongly regular if for xelin(a,),
lim f,(z) = 0, where (f,) is the biorthogonal sequence of linear functionals.

=00

THEOREM 3.2. Let B be an F-space; then the following are equivalent:

(iy E is non-minimal,

{ii) E contains a regular M-basie sequence,

(iil) # contwins a strongly reqular M-basic sequence,

(iv) K contains a regular basic sequence.

Proof. (iv) = (ii). Immediate.

(ii) = (i). By Proposition 3.1, since the usual basis of o is not regular.

(i) = (ili). By the proof of Theorem 2.1 (ii) (= Corollary 3.4 of [1])
E contains a sequence (#,) which is regular and basic in a weaker metriz-
able topology u. If we fi—ﬂ(%), then & is also in the g-closed linear span
of (@,) and therefore

18

i

(1) x fal@), .

il

n

Since (x,) is w-regular, lim f,(x) = ¢ and {(,) is strongly regular.

H—>00
(iii) = (iv}. Let K, = lin(z,), where {x,) is a strongly regular M-basic
sequence. Let (f,) be the biorthogonal sequence of linear ifunctionals
on F,. Since the topology induced by the functionals (f,) is strictly weaker
than the original topology on E,, ¥, is non-minimal and contains a basic
sequence {¥,) by Theorem 4.2 of [1]. For e E,, sup |f,{x) < oo, and so
by the Baire Category Theorem, the norm "

el = sup|f, ()]

is eontinuous on F,. The sequence |y, 'y, is a regular basic sequence
in K.

COROLLARY 3.3. If K is an F-space, then E conlains a basic sequence
if and only if E contains a closed infinite-dimensional subspace Y with
a total family of continuous linear functionals.

Proof. One direction is trivial. Suppose Y is a closed infinite-dimen-
sional subspace and possesses a total family of continuous linear functionals.
If ¥ iz minimal, then the weak topology on ¥ is the original topology
and s0 Y o~ o. If Y is non-minimal, then Y contains a basic sequence.

Remark. Corollary 3.3 shows that the existence question for basic
sequences iy equivalent to Problem 1V.2.4, p. 114, of Rolewicz [6].
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In our last two results of this section we attempt to classify F-spaces
in which every closed subspace contains a basic sequence. An F-space I
(of infinite dimension) will be said to have the Restriclted Hahn—Banach
Eatension Property (RHABEP) if whenever L < F is an infinite-dimensional
closed subspace and 0 # xe¢ L, then there is an infinite-dimensional
closed subspace M of L with x¢ M.

PrRoOPOSITION 3.4. Let B be an infinite-dimensional F-space; the follow-
ing are equivalent:

(1) If L is an infinite-dimensional closed subspace of B and G 18
a finite-dimensional subspace of L, then there is an infinite-dimensional
subspace M of L with MnG = {0}. A

(ii) Let L be an infinite-dimensional closed subspace of E and G o
finite-dimensional subspace of L. If ¢ is a linear functional on G, there
18 an infinite-dimensional closed subspace K of L containing G, and a con-
tinuous linear functional v on K extending ¢.

(iii) ¥ has RHBEP.

Proof. (iil) = (i). We prove (i) by induetion on dimG. Certainly (i)
is true for dim@ = 1. Now suppose it is true for dimG = k. Suppose
Aim@G = k-1, and let G, be any subspace of G of dimension k. Choose
a closed infinite-dimensional subspace 3, of L such that G,n3M, = {0}.
Let L, = M,+G, and suppose x<G \G,. Then there is an infinite-dimen-
sional closed subspace N of L, with ¢ ¢ N. Let M = NnM,; then dim N /M
< dimL,/ M, = k so that dim M = oo, and clearly MnG = {0}.

(i) = (ii). Choose M as in (i) and let K = M -+ G; we extend ¢ by
w(x) = (), e, and p{®) =0, we M. Then p '(0) =¢ (0)4+-G is
closed, and s0 y is continuous.

(ii) = (i). Suppose we L;let @ = lin{x} and define ¢(iz) = 1. Extend-
ing ¢ as in (ii) we take M = »~{0).

THEOREM 3.5. An F-space E has RHBEP if and only if every closed
infinite-dimensional subspace contains a basic sequence.

Proof. Suppose ¥ has RHBEP and let ¥, be a closed infinite-dimen-
sional subspace of E; we may suppose B, separable. We may determine
a collection % of cloted infinite-dimensional subspaces of F, maximal
with respect to the property that any finite subcollection has infinite-
dimensional intersection. Let G = ()%, If dim@ = oo, then Ge¢Z by
maximality ; however, by RABEP, G contains a proper closed infinite-
dimensional subspace G, and Gy¢% by the maximality of #. Hence
dim@ < oo. Then B\G = | Jj(E,\L; Le ), and as E,N\G is a Lindelof
space, there is a countable subset (L,: ne A7) of & such that {_j (£N1L,)
= Bg\G, Le., @ = ML,. Letting M, = L;n...nL, we have dim M, =

n

and (MM, = G,. We may select a subsequence M,,, such that M,
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# My for nz 1. Suppose z,¢ Mo\l 04 for all 2, and let K,
= lin(z,, @y.1. ---)- Then K, is a strictly decreasing sequence of closed
infinite-dimensional subspaces and (I, = H < G.

By RHBEP, pick an infinite-dimensional subspace J of A, so that
JH = {0}. For each n dimdJ[JnK, < dimK,[K, < oo so that JNnK,

is infinite-dimensional and (1) (J N K,) = {0}. We may {ind a subsequence

%
JNK ., so that JOK 7+ JOK,, , n>1 and hence we may select
#pe JOK ST 0K, . Then (z,) is an M-basic sequence 1n B, I B,
is minimal, then (z,) is already a basic sequence (3.1); otherwise E, con-
tains a basic sequence (3.2).
Conversely, it L < F is an infinite-dimensional closed subspace and
we L, we may find a basie sequence (x,) in L. Then z¢lin{z,, 2, 1, ...}
for some ne 4.

4. Pseudo-Fréchet and psendo-reflexive F-spaces. Let w (¥, E') denote
the weak topology induced on a linear topological space E by its (topol-
ogical) dual E'. We call an F-space E pseudo-Fréchet if for each linear
subspace 8 of ¥ and each bounded subset B of 8, the topology w(8, §')
coineides on B with w(H, E'). In general, w(S, 8’} 13 at least as strong
as the restriction to 8 of w(F, E'), and if £ is locally convex then the
Hahn-Banach theorem guarantees that the two topologies on § coincide.
Thus every Fréchet space is psendo-Fréchet. On the other hand, it follows
immediately from [1], Corollary 5.3, that every non-locally convex F-
space has a subspace 8 for which (S, §") is properly stronger than
the restriction to S of w(E, E’'). So it is not obvious that any non-locally
convex pseudo-Fréchet spaces exist. Moreover, the simplest non-iocally
convex F-zpaces — the sequence spaces I? for 0 < p < 1 — are not pseudo-
Fréchet, as we will soon see; and neither are the Hardy spaces H” of
analytie functions for 0 < p < 1.

In order to provide non-trivial (i.e., non-locally convex) examples
of pseudo-Fréchet spaces we study the notion of a shrinking basis for
an F-space. We call a basiz for an F-space shrinking if each of its bounded
block bases tends weakly to zero (cf. [8], Theorem 4.2, for the Banach
space case). We say a basic sequence is shrinking if it is a shrinking basis
for its closed linear span. The usual Banach space arguments {[9], Theorem
4.2, or [4], Chapter T1I, §3), appropriately generalized, show that a basis
(e,) for an F-space I is shrinking if and only if its coordinate functionals
{e,) span a dense linear subspace of £’ if and only if (e,) is a basis for E';
where E' is given the strong topology (uniform convergence on bounded
sets). We will not need these alternate characterizations in this paper,
so we omit their proofs.

We call a basis {(e,) for an F-space E hyper-shrinking it every bounded
Dlock basis for {e,) tends to zevo in the weak topology of s closed linear
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span; or equivalently, if every block basis for (e,) is shrinking. Clearly,
every hyper-shrinking basis is shrinking, and the converse holds for
pseudo-Fréchet spaces (it seems unlikely that the converse should hold
for general F-spaces, but we have not been able to find a counter-example).
In this section we show that every F-space with a hyper-shrinking basis
is pseudo-Fréchet, and we use this result to construct examples of pseudo-
Fréchet spaces that are not locally conves.

We call an F-space pseudo-reflexive if it has enough continuous linear
functionals to separate points, and every bounded subset is relatively
compact in the weak topology of its closed linear span. It is easy to see
that every pseudo-reflexive F-space is pseudo-Fréchet. It follows from
standard results ([3], §23, Sec. 5, p. 303) that a Fréchet space is pseudo-
reflexive if and only if it is reflexive. We show that an F-space with
a basis 15 psendo-reflexive if and only if the basis is boundedly complete
and hyper-shrinking (a basis (e,) 18 boundedly complete if the series Xa,e,
converges whenever (a,) is a sealar sequence for which the collection

N
of partial sums { Y a,e,: ¥ =1, 2, ...} is bounded). This generalizes
gh=]
aresult of James for Banach spaces [4]; Chapter V, §2, Theorem 2, and
allows us t0 construct examples of non-locally convex pseudo-reflexive
F-spaces.

Before getting to the proofs we note some simple properties of equi-
valent basic sequences. If (@,) and (y,) are equivalent basic sequences
in F-spaces there is a linear homeomorphism ¥': lin(#,)-+lin(y, ) such that
T#, =¥,. The following lemma is then immediate.

LeMMa 4.1, Suppose (x,) and (¥,) are equivalent basic sequences in
I-spaces:

(i) If (w,) tends to zero in the weak lopology of its closed linear span,
then so does (y,,).

(i) If (x,) is of type P*, then so is (y,).

We begin our study of pseudo-Fréchet spaces with the promised
non-examples.

PROPOSITION 4.2. 1P 45 not a pseudo-Fréchet space for 0 < p < 1.

Proof. Fix 0 < p <« 1, let (€,)7 be the standard unit vector hasis
for I, and let

g = > ifmy

Fiw= 1

or f = {f(n)]7°< 7. Since the pairing

oy = X fmgn)  (fel®, gel™)
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identifies I° as the dual of 17, the basis (e,) does not tend weakly to zero
in 12, Now it is easy to find a block basis (f;) for (e,) such that [|fill, = 1
for all &, but fll;—0. In particular, (f,) tends to zero weakly in /7. But,
clearly, (f,) is a basic sequence equivalent to (ex), 80 ([} does not tend
to zero in the weak topology of its closed linear spams. Thus w (1P, 17)
does not coincide with (S, §’) on the bounded subset (f;) of S, hence I8
is not pseudo-Fréchet; and the proof Is complete,

Note that every closed subspace of a psendo-Fréchet space is again
pseudo-Fréchet. In {71, Sec. 4, Prop. 1, it was observed that the Hardy
spaces H¥ of analytic functions in the unit disec contain a subspace iso-
morphiec to ¥ {0 <p<1). In particular, H” iz not pseudo-Fréchet for
0<p<1.

Tn order to move toward more positive results we require two simple
lemmas, both of which are known for Banach spaces.

TEMMA 4.3. Suppose E is an F-space with basis (e,), and let y denoie
the topology induced on E by the coordinate fumctionals of the basis. Then (e,) .
is shrinking if and only if y coincides with w(E, B') on every bounded subset
of E.

Proof. Every block basis for (e,) is y-convergent to zero, 50 certainly
(¢,) is shrinking whenever y coincides with w(E, E') on bounded sets.

Conversely, suppose {e,) is shrinking; it is enough to show that if »,
is bounded and z,—0(y), then a,—0, w(E, E').

i
3]
mn = Ztn,kek.
k=1

and |y(x,)| = & for some ye ', then by a gliding hump argument (see [6],
p. 52) we find increasing sequences M., P, 8O that

Pl 1
|
11E mmﬂ - Z fmﬂ,kek !! < —9;
E=p4+1
(where ||-]] is an F-norm determining the topology on E). The sequence

Prs1

{ P b ek} is a block basic sequence and is bounded since the partial-sum
Putl

operators

ki ol
>,

8,z = S 6, where *}J t,6; = @,
f=1 i=1

are equicontinuous. Hence
Pa1
h !
lim 2 Ty 166 = 0 w(E, I').
Lt TN

It follows that limy(a, ) = 0, contrary to the assumption,
P00
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LEMMA 4.4 (ef. [8], Theorem 12.2, p. 369, for Banach spaces). Suppose B
18 an F-space with a basis (e,). Then (e,) is hyper-shrinking if and only
if no bounded block basis for (e,) is of type P*.

Proof. If (e,) is hyper-shrinking, then every bounded block basis
tends to zero in the weak topology of its closed linear span, hence cannot
be of type P*. Conversely, suppose (e,) is not hyper-shrinking, so there
exists a bounded block basis (f,) which does not tend to zero in the weak
topology of 8 = lin(f;). By passing to a subsequence if mnecessary, we
may assume that there exists ye 8 with inf |p(f,)| > 0. Thus the vectors

k

Jrlw(fx) form a bounded bleck basis for (e,) of type P*, and the proof
is complete.

We now give our main eriteria for an F-space to be pseudo-Fréchet.

THEOREM 4.5. Every F-space with a hyper-shrinking basis is pseudo-
Fréchet.

Proof. Suppose E is an F-space with hyper-shrinking basis (e,),
S is a subspace of ¥, and B is a bounded subset of §. We want to show
that w(E, E’) coincides on B with w (8, §'). Suppose otherwise, i.e., suppose
w(N, 8') is properly stronger on B than w(E, E'). By Lemma 4.3 the
coordinate topology y agrees on B with w(E, E'), and is therefore properly
weaker than w(8, §'). Since p is metrizable, it follows that there is a
y-convergent sequence in B that is not w(8, 8')-convergent. After trans-
lating this sequence by its y-limit (which by definition lies in 1, hence
in 8} we arrive at a bounded sequence in S which is y-convergent 1o zero
but not w(S, §')-convergent. By passing to a subsequence if necessary
we may further assume that our sequence iz w(8, 8 )-regular, hence
regular for the original topology of E. By Theorem 2.1, this sequence
contains an M-basic subsequence {b,): thus (5,) is a bounded M-basic
sequence in N that is y-convergent to zero, but w (8, §')-regular.

By a gliding hump argument ({6], p. 52) there is a subsequence (b, )
and a block basis (x,) for (e,) such that Eﬁb,%mmkié < oo, where '] is
an F-norm inducing the topology of E. According to [1], Lemma 4.3
and its proof, (bnk) is therefore a basic sequence equivalent to {#,). Thus
Lemma 4.1 and the remarks preceding it show that (z,) is bounded but
not convergent to zero in the weak topology of its closed linear span,
which contradicts the fact that (e,) is hyper-shrinking. Thus w(8, §')
coincides on B with w(¥, E'), and the proof is complete.

We can at last give examples of non-locally convex pseudo-Fréchet
spaces. For 0 < p < g and f = {f(n))° a complex sequence, lef

igf”p’q = { Z{ Z §f{?‘£)ip}gfp}”'q

n=0 2Rl
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when ¢ << oo, and let

. % 1fp
1l = sup | X 1P
”! # lzﬂg}ﬁ;"“ﬂ / j
Define 1?{p) to be the collection of sequences f such that lf[,, < oo,
and let ¢y(p) denote thoze members of I™(p) for which

lim Y R =0,
F R L A L 1
For p = 1 the functional |j-ji, , is a norm which makes (p) into a Banach
space. For 0 < p < 1, II-],, is a quasi-norm in the sense of [3], p. 159,
and the sets
fet’(p): Whoe<e  (e>0)

form a local base for a complete, Hausdorff, locally bounded topology
on 1¥(p). So in any case I?(p) is a locally bounded #-space in the topology
induced by iil,,- Now ¢,(p) iz easily seen to be a closed subspace of
I°(p), so it is also a loeally bounded F-space.
ProPosTrION 4.6. 11(p) and cy(p) are ot locally convex if 0 < p < 1.
Proof. We need only find a bounded set whose convex hull is un-
bounded. Define f, by

avk  qf 9 p < 28

Juln) == 1 0

otherwise,

for & = 0,1,2, ... Then each f, is a convex combination of the standard
unit vectors (e,), where

e, (m) =0

“ﬂ'ﬂl
for » =1,2,... Moreover, for 0 < p < g < oo
“fk%:,uq = QHIPH) U" =0, 1, 2} vee)
and je,ll, , = 1 for all n. Thus (e} is bounded in I{p) and ¢,{»), but when
0 < p <1, its convex hull is not. This eompletes the proof.

Note that the standard unit vectors (e,) defined in the above prooi
form a basis for I%(p) and c¢y,(p) when g << co.

THEOREM 4.7. {¢,) 18 o hyper-shrinking basis for 1%(p) (L < ¢ < o0}
and ¢y(p).

Proof. Suppose (f,) is a block basis for (e,}, say

fo= Y
JETT “ AL
AL <0y

where 1 < n, < ny < ..., and {g,) is a scalar sequence. Choose integers
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< Py < P: < ... and a subsequence (k;) such that

oF; < o¥i+1
Ty << Mgy << ° .
Then the vectors g; = f;, (1 =1,2,...) form a block basis for (¢,), the
jth member of which is “*uppmted’ on the integers 2" < < 2,
ie.,
4 = Z h,e, ( m1,2,,,,}

. s
22}?€77_<21]1,3

for an appropriate scalar sequence (b,). Now if ¢ << oo and () is a scalar
sequence, then letting ¢; = p;,, —p; —1 we have

Sl =Y Y wal;

el ¥R
i ¥ <n<9ﬁ +1 E
Yy X o
Tz l L 5,17
T G<hgy oMty ogPit Rl
= 2 P | N
i o<k=g; FitFoy UL
= X 1.
.

In particular, if (f,) is regular and bounded, then (g;) is equivalent to
the standard unit vector basis of 1% Now since 1< ¢ < oo, this latter
basis tends weakly to zero in % hence by Lemma 4.1, (g;) tends to zero
in the weak topology of its closed linear span. Thus every bounded block
bakis for (e,) tends to zero in the weak topology of its elosed linear span,
hence (e,) is a hyper-shrinking basis for ¥(p).

For e,(p) a caleulation similar to the one above shows that every
bounded regular block basis for (e,) has a subsequence equivalent to
the standard unit veector basis of ¢,, which is a shrinking basis. By the
argument just given, (e,) is a hyper-shrinking basis for ¢,(p), and the
proof is complete.

COROLLARY 4.8. I4(p) is a non-locally convex pseudo-Fréchet space for
0 <p<l1l<g< oo. The same is true of e (p) for 0 < p < 1.

Proof. The result follows immediately from Theorem 4.5, Proposition
4.6, and Theorem 4.7.

- We next turn to pseundo-reflexive F-spaces. To set the stage for our
main result recall that a Banach space with a basis is reflexive if and
only if the basis iz boundedly complete and shrinking ([4], Chapter V,
§2, Theorem 2).

TIROREM 4.9, An F-space with a basis is pseudo-reflexive if and only
if the basis is boundedly complete and hyper-shrinking.
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Proof. Let E be an F-space with basis (e,), and let y denote the
topology induced by the coordinate functionals for this basis. It is not
difficult to see that (e,) is boundedly complete if and only if every bounded
subset of F is relatively y-compact (see [7], Lemma 1, p. 1081, for a proof}.

Now suppose & is pseudo-reflexive. We will show that (e,) is boundedly
complete. Let B be a bounded subset of F, and let S be the closed linear
span of B. Then the (8, 8')-closure € of B is w(8, 8)-compact, hence
y-compact since yp is Hansdorff and < w{8, 8) on 8. It follows easily
that € is also the y-closure of B, so B is relatively y-compact, hence (¢,)
is boundedly complete. Note for future reference that y = w(8, 8} on O,
hence on B.

To see that {e,) is hyper-shrinking suppose that (f) is a bounded
block basis for (e,) and let 8 = lin(f;). By the above remark, y = w ({8, 8)
on (f;). Clearly, (f,) it y-convergent to zero, hence w(8, 8§ )-convergent
{0 zero, so {e,) is hyper-shrinking.

Conversely, suppose () is hyper-shrinking and boundedly complete.
1f & is not psendo-reflexive, then there is a bounded subset B that is not
relatively (8, 8')-compact, where S = linB. Since (e,) iz boundedly
complete, the y-closure C of B is y-compact. We claim that ¢ & 8. Indeed,
¢ is bounded in E, since the original topology of E is y-polar (this follows
easily from the fact that (e,) it a basie). Now if € were contained in §
we would have y = (S8, 8’) on € because (e¢,) is hyper-shrinking (4.3
and 4.5), so ¢ would be (8, 8)-compact, hence B would bhe relatively
w(8, §')-compact: a econtradiction. Thus there exists a vector beONS,
and since y is metrizable, there is a sequence (b,) in B that s y-convergeny
to b. ‘

Now the sequence (b —b,) is bounded, y-convergent to zero, and
regular, so it follows as in the proof of Theorem 4.5 that there is a sub-
sequence equivalent to a block basis (s,) for (e,). We may as well assume
this subsequence is (b—b,) itself. We claim that (b-—b,) is of type P
To see this, define a linear functional ¢ on 7' = lin(8, b) by letting ¢ = 0
on 8, and ¢(#) = 1. Now T is closed in E ([3], §15, sec. 5, p. 152), hence
T = lin(b —b,). Moreover, ¢ is continuous on T, since kerg = S is closed
in T'; and finally, (b — b,) = 1 for all ». Thus (b —b,) is a basic sequence
of type P* which is bounded in E, hence (z,) is a bounded block basis
of type P*. By Lemma 4.4, (e,) is not hyper-shrinking: a contradiction.
Thus # is psendo-reflexive, and the proof is complete.

COROLTARY 4.10. 1%(p) is pseudo-reflewive for O < p < g << oo, ¢o(p)
is not pseudo-reflexive (0 < p < o).

Proof. We observed in Theorem 4.7 that the standard unit vector
basis (e,) ix hyper-shrinking for all the spaces mentioned above. I{ is
eaxy to see that it is also houndedly complete for 17(p), but not for ¢, (p).
By Theorem 4.9 the proof is complete.
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Since 7(p) and e¢,(p) are not locally convex when 0 < 9 <1, we
have:

COROLLARY 4.11. There exist pseudo-reflexive locally bounded F-spaces
that are not locally conver. There exist non-locally convex locally bounded
pseudo-Fréchet spaces that are not pseudo-reflexive.

A number of results in {113, Sec. 5, deal with vector topologies on an
F-space compatible with (i.e., having the same closed subspaces as) the
original topology. The Hahn-Banach theorem guarantees that the weak
topology of a locally convex space is compatible with the original one,
but it follows from [1], Corollary 5.3, that this fails in every non-locally
convex F-space. So it is not obvious that a non-locally convex F-space
can have a weaker compatible vector topology.

Our next result shows that every locally bounded, pseudo-reflexive
F-space does have such a topology: the bounded weak topology. The
bounded weak topology on an F-space E is the strongest topology on K
that agrees with the weak topology on bounded sets.

THREOREM 4.12. The bounded weak topology of a locally bounded, pseudo-
reflexive F-space 1is a vector topology compatible with the original one.

Proof. Let § denote the bounded weak topology on the locally
bounded, pseudo-reflexive F-space E. Since every bounded subset of F
is weakly relatively compact, it follows from [2], Proposition 3.3, or [10],
Proposition 6.2, p. 48, that § is a vector topology. To see that § is com-
patible with the original topology of ¥, suppose § iz a closed subspace
of ¥: we will show that 8 is §-closed, that is, SN B is relatively weakly
closed in B for every bounded subset B of E. Indeed, BN is w{8, §)-
relatively compact, so its w{8, 8')-closure C is w{8, §')-compact, hence
w(E, E')-compact. Recall that every pseudo-reflexive space has, by
definition, a Hausdorff weak topology; so C is w(E, E')-closed. Since
BnS = Bn0, we see that BN is w(E, E')-closed in B, which completes
the proof.

We remark that the bounded weak topology on a Hausdorff locally
bounded space coincides with the original topology only when the space
ig finite dimensional. For if the two topologies coincide, then the space
has a compaet neighbourhood of zero, and must therefore be finite di-
mensional ({3], §15, Sec. 7, p. 155). In particular, the bounded weak topology
on the space %(p) for 0 < p <1 < ¢ < oo is strictly weaker than, yet
compatible with, the original topology.

We close with an application of Theorem 4.12 to basis theory. In
[1], Theorem b.5, it is shown that if a sequence in an F-space is a basis
for a weaker vector topology compatible with the original one, then it
is also a basis for the original topology. This, along with Theorem 4.12,
yields the following “bounded weak basis theorem’:
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COROLLARY 4.13. In a locally bounded, pseudo-reflexive F-space every

bounded weak basis s a basis.

This result contrasts sharply with the main result of [71 which states

that if a locally bounded, non-locally convex F-space has a weak basis,
then it has a weak basis that is not a basis.

(51
(6]
[7]
[8]
£9]
(10]
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