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Abstract
A topological group is group with a topology for which the group
operations are continuous. Using group operations we can construct
special open sets that restrict the types of topologies allowed. We shall
show that many of the Tychonoff separation axioms are, in fact, equivalent
for topological groups. For example, we shall show that if a topology is T0

then it must be Hausdorff. We also outline Kolmogorov’s construction
showing how to generate a Hausdorff topological group from a group that
is not T0.
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Motivation (1/2)

Given a group G and a set X .
A group action on X is a map G × X → X denoted

(g , x) → gx ∈ X .

The action is a left action if

g1 (g2(x)) = (g1g2) (x)

A group action can give insight into X .

Groups acting on a manifolds is a rich subject in Riemannian geometry.
For example, SO(3) (rotations) acts on S2 (sphere).

A group acting on itself describes the structure of the group (see [Hun74]).
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Motivation (2/2)

Given a group G with a group action

G × X → X ,

what kind of space is X?

Differentiable manifold?
Normed linear space? Banach space? Hilbert Space?

In many of the examples, X is (at least) a topological space.

Add structure to G so group action is compatible with X .

If X is topological space then G should be a topological space.
The group action should be a continuous map.

That’s a topological group.
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Outline

Motivation

Definition of Topological group

Separation axioms in topological groups

What do we do if G is not T0?

Second countable and normal

Hilbert’s Fifth Problem

We do not proceed in the most direct way,
but instead show how the group operations interact with the open sets.
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Manifold Taxonomy

Start with a topological space X , and add successive structures to X .

Manifold Structures

Topological Space: Set X equipped with topology.

Topological Manifold: Locally Euclidean Topological space This
means there is a collection of homeomorphisms ψα : Uα ⊂ X → Rn,
where Uα is open cover of X .
Topological manifolds are locally compact.

Differentiable Manifold: Topological manifold with a differential
structure.
The coordinate neighborhoods (Uα, ψα) have ψβ ◦ ψ−1

α differentiable
(e.g. C∞ or real analytic ).
Add requirement that they are 2nd countable.
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Topological Group Taxonomy
There is a group taxonomy related to this.

Group Structures

Topological Group: Group is a topological space and group operations
are continuous.

Topological groups that are locally Euclidean: groups that are
topological manifolds.
These groups are locally compact.

Lie Group: Group is a differentiable manifold and group operations
are smooth.
We add the restriction that G is second countable.

If G is a Lie Group and X a differentiable manifold, the Lie Group action

G × X → X ,

is a differentiable map.
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Topological Group Motivation

If we assume X is a topological space.

We want the mapping
G × X → X ,

to be a continuous map.

This means G should have a topology.

If the topology is consistent with the group operation we have a
topological group.

Group operations should be continuous maps.
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Topological Group: Constituents

Definition

A group is a set G with an associative binary operation and,

1 There is an identity e with g · e = g = e · g for all g ∈ G .

2 For every g ∈ G there is a two-sided inverse g−1 that satisfies
g · g−1 = g−1 · g = e.

Definition

A topological space is a set X with a collection of open sets T that satisfy

1 Union of elements of T are in T .

2 Finite intersections of elements of T are in T .

3 X ∈ T and ∅ ∈ T .
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Topological Group

Definition

A group G is a topological group if it is a topological space
and the following group operations are continuous:

1 G × G → G given by (g1, g2) → g1g2,

2 G → G given by g → g−1.

It is enough to show the following is continuous:

(g1, g2) → g1g
−1
2 .

References
See [Pon46] and [Hus66].

Pontryagin is great but a bit dated.
His definition of topology is interesting.
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Basic Properties of TG

Given any g ∈ G form the ”left-action”

Lg : G → G given by Lg (h) = gh.

The mapping Lg is continuous.
Lg has an inverse Lg−1 which is also continuous.
This means Lg is homeomorphism of G onto G .

Rg (where Rg (x) = xg) is also homeomorphism of G onto G .

If U ⊂ G is open then UF and FU are both open, for any F ⊂ G .
They are both unions of open sets.

If H < G is normal subgroup then G/H is a topological group (see below).
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Examples of Topological Groups

Every topological vector space is a topological group.
TVS also have scalar multiplication, which results in richer neighborhoods.

Any Lie Group is a topological group. E.g. GL(V ), SO(N),SU(N).

Let X be a metric space. The set of isometries is a topological group.
Group Product is composition. Topology is point-wise convergence.

We have a few exotic examples below.
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Topologies on G

The topological space G supports a continuous group action.
This restricts the kinds of topologies allowed on topological groups.

Topological Groups also have special neighborhoods.

Topological Groups have group of transitive homeomorphisms.
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Neighborhoods: Symmetric

Proposition

Let G be a topological group and U a neighborhood of e.
There is an open set Us ⊂ U with

Us = U−1
s . (1)

Proof.

The map g → g−1 is continuous and takes e → e, so there is an open
neighborhood U1 of e with U−1

1 ⊂ U.

Let Us = U1 ∩ U−1
1 , so e ∈ Us ⊂ U.

Claim: Us = U−1
s as

(
U1 ∩ U−1

1

)−1
= U−1

1 ∩ U1.
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Neighborhoods: Powers (1/2)

Proposition

Let G be a topological group and U a neighborhood of e.
There is a neighborhood U2 ⊂ U of e with

U2
2 ⊂ U. (2)

Proof.

The composition G → G × G → G given by g → (g , g) → g2

is continuous.

The map g → g2 is continuous and takes e2 → e,

so there is a neighborhood U2 with U2
2 ⊂ U.
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Neighborhoods: Powers (2/2)

It’s easy to generalize this to the following:

Proposition

Let r1, r2, · · · , rm ∈ Z, rj ̸= 0 and g1, g2, · · · , gm ∈ G with

g r1
1 g r2

2 · · · g rm
m = g0. (3)

For any neighborhood U0 of g0 there are neighborhoods Uj of gj with

U r1
1 · · ·U rm

m ⊂ U0. (4)

When g0 = gi = e we have

Proposition

There are U1, · · · ,Um neighborhoods of e with,

U r1
1 · · ·U rm

m ⊂ U0. (5)
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Neighborhoods: Conjugation

Proposition

Let G be a topological group and U a neighborhood of e,
For every g ∈ G there is an open set Ug with

e ∈ Ug ⊂ U (6)

gUgg
−1 ⊂ U (7)

Proof.

For every g ∈ G the map x → gxg−1 is continuous and takes e → e,
so there is an open neighborhood U1 of e that satisfies

gU1g
−1 ⊂ U.

Define
Ug = U ∩ U1. (8)
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Topological Vector Space (1/2)

Real topological vector spaces have continuous scalar multiplication:

(s, v) → sv ∈ V , s ∈ R, v ∈ V . (9)

You can generate symmetric neighborhoods that are star-shaped.

Given set {v1, · · · vn}, there is a continuous map T : Rn → V by

T (s1, s2, · · · , sn) =
n∑

i=1

sivi (10)

Let S = {(s1)2 + · · ·+ (sn)
2 = 1} then T (S) is compact,

so T (S)c is an open set that contains 0, (Hausdorff required)
form a symmetric subset of T (S)c .

Using these two facts we can create conical neighborhoods,
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Topological Vector Space (2/2)

A conical neighborhood has compact closure when intersected with
Span{v1, · · · , vn},
as it’s contained in the compact set{

n∑
i=1

sivi

∣∣∣∣∣ (s1)2 + · · ·+ (sn)
2 ≤ 1

}
(11)

Using these neighborhoods you can show:

a topological vector space is finite dimensional
if and only if it is locally compact.

This is false if not T0.
A TVS with the indiscrete topology fails this theorem.
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Topological Closure

The closure of a set F is the smallest closed set containing F .
We use the following definition:

Definition

A point x is in the closure of F (denoted cl(F )) if every open set
containing x intersects F .

It is easy to show these two definitions are equivalent.

Proposition

If X is Hausdorff and F ⊂ X is compact then F is closed.

SketchLet x ∈ cl(F )− F .
For every y ∈ F find open sets x ∈ Ux , y ∈ Uy with Ux ∩ Uy = ∅.
A finite subcover means ∩Ux is an open set that does not intersect F .
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Topological Separation Axioms

Let X be a topological space and let x , y ∈ X with x ̸= y .

0 A0: X is T0 if there is an open set that contains one element but not
the other.

1 A1: X is T1 if there is an open set Ux with x ∈ Ux and y /∈ Ux . Since
x , y can be exchanged there is an open set Uy with y ∈ Uy and
x /∈ Uy .

2 A2: X is T2 (Hausdorff) if there are open sets x ∈ Ux and y ∈ Uy

with Ux ∩ Uy = ∅.
3 A3: X is regular if for every point x and closed set F with x /∈ F ,

there are open sets Ux ,UF with x ∈ Ux and F ⊂ UF and
Ux ∩ UF = ∅. (we do not assume Hausdorff)

4 X is normal if, for every closed sets F1,F2 there are there are open
sets U1,U2 with F1 ⊂ U1,F2 ⊂ U2 and U1 ∩ U2 = ∅.
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Examples: Indiscrete Topology

Let X be any set with at least 2 elements. Define the topology to be the
collection of sets

Ti = {X , ∅} . (12)

This is called the indiscrete topology.

(X ,Ti ) is not T0 if X has more than 1 element.

1 (X ,Ti ) is compact (any open cover contains the set X ).

2 (X ,Ti ) is 2nd countable.

3 (X ,Ti ) is locally compact.

4 Any map into the indiscrete topology is continuous.

Any group can be given the indiscrete topology to create a topological
group.
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Examples: T0 but not T1

There are spaces which are T0 but not T1.
Let X be a set with at least two elements and let x0 ∈ X . Define a
topology

Ti = {A ⊂ X | x0 /∈ A} ∪ {X , ∅} . (13)

There is no open set containing x0 except X !

The topological space (X ,Ti ) is T0,
for any x ∈ X , x ̸= x0 the set {x} is open.

We can separate any two points since one of them is not x0.

There is no open set containing x0 other than X so not T1.

This example is not homogeneous
and cannot be made into a topological group.
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For Topological Groups T0 is equivalent to T1

Proposition

If a topological group G is T0 then G is T1.

Proof.

Let g1, g2 ∈ G and assume there is an open set U1 with

g1 ∈ U1 and g2 /∈ U1. (14)

The set Lg−1 (U1) = g−1
1 U1 is an open neighborhood of e, so there is a

symmetric Us with

e ∈ Us ⊂ g−1
1 U1 ⇒ g1Us ⊂ U1 ⇒ g2 /∈ g1Us . (15)

Claim: g1 /∈ g2Us as if g1 = g2u then g2 = g1u
−1 and

g2 ∈ g1U
−1
s = g1Us ⊂ U1, contradiction! (16)

So g2 ∈ g2Us but g1 /∈ g2Us .
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In T1 Singletons Are Closed

In T1 singletons are always closed.

In fact it’s easy to show,

Theorem

A topological space is T1 if and only if single element sets are closed.
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Co-finite is T1 but not T2 (Hausdorff)

Let X be an infinite set. Define a topology collection by

Tcf = {A ⊂ X |X − A is finite } ∪ {∅}. (17)

This is the co-finite topology.
If X is an infinte set the co-finite topology is T1 but not T2.
Singletons are closed but two non-empty open sets always intersect.
The cofinite topology is compact and connected.

Cofinite is similar to Zariski topology (zeros of polynomials are closed).

Cofinite topology on the group S1 is not a topological group.
Addition is not continuous.
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Bug-Eyed Line

Identify points in two real lines R× {a} and R× {b}.
Identify (x , a) ∼ (x , b) when x ̸= 0.

This example is T1.

This example is not Hausdorff.

This example is a topological manifold of dimension 1.
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For Topological Groups T1 is Hausdorff (1/2)

Proposition

If a topological group G is T1 then G is T2 (Hausdorff).

Proof.

Let g1, g2 ∈ G and let U1 be a neighborhood of g1 with g2 /∈ U1.

Claim: There is an open set U0 with e ∈ U0 and

e ∈ U0U
−1
0 ⊂ Lg−1

1
(U1) = g−1

1 U1. (18)

The map (h1, h2) → h1h
−1
2 is continuous so

there are open sets with W1W
−1
2 ⊂ g−1

1 U1, with e ∈ W1, e ∈ W2.
Set U0 = W1 ∩W2, so that e ∈ U0.

Use U0 to construct separating neighborhoods.
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For Topological Groups T1 is Hausdorff (2/2)

Proof.

We have g1 ∈ U1 and g2 /∈ U1 and

e ∈ U0U
−1
0 ⊂ g−1

1 U1. (19)

Claim: g1U0 ∩ g2U0 = ∅.
If g1u1 = g2u2 with u1, u2 ∈ U0, then

g2 = g1u1u
−1
2 ⇒ g2 ∈ g1U0U

−1
0 ⊂ U1, Contradiction! (20)

So g1U0 and g2U0 are the required open sets.

Note this proof really only assumes T0 so proposition on T1 is not really
required.

But it’s more clear to include both.
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Separation Axiom Summary

Here’s what we have so far.

Theorem

Let G be a topological group.
G is T0 if and only if it is T1

and is T1 if and only if it is T2 (Hausdorf).

Robert Lyons (TOC) The Topologies of Topological Groups January 25, 2024 29 / 65



Regular

Proposition

If G is a topological group then G is regular (T0 not assumed!).

Proof.

First assume F is closed with e /∈ F so e ∈ F c is open
There is an open set U0 with e ∈ U0 and U−1

0 U0 ⊂ F c .
Claim: U0 ∩ U0F = ∅
If u1 = u2f for u1, u2 ∈ U0 then f = u−1

2 u1 ∈ U−1
0 U0 Contradiction!

Now let F be closed g /∈ F so that e /∈ Fg−1, which is a closed set.
There is U0 with e ∈ U0 and U−1

0 U0 ⊂
(
Fg−1

)c
.

Claim: U0g ∩ U0F = ∅
If u1g = u2f ⇒ u−1

2 u1 = fg−1 Contradiction!.
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Are Topological Groups Normal?

If a topological group is T0 then it is Hausdorff.

A topological group is always regular.

Are topological groups normal?

Are topological groups metrizable?

Robert Lyons (TOC) The Topologies of Topological Groups January 25, 2024 31 / 65



Moore/Niemytzki plane 1

Hm =
{
(x , y) ∈ R2

∣∣ y ≥ 0
}
. (21)

Let B((x , y), ρ) be open disk, centered at (x , y), with radius ρ.
Topology Hm generated by the base,

B((x , y), ρ) where ρ < y (22)

B((x , y), ρ) ∪ {x , 0} where ρ = y . (23)

There are two types of open disks.
These form a base for the topology on Hm.

Figure: Open Disks on Moore/Niemytzki Plane. Disk on left includes point.

See [SS70].
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Moore/Niemytzki plane 2

We sketch some facts:

1 Hm is NOT a topological group.

2 Hm minus the x−axis (open half-plane) is open.
It is union of disks of equation (22)

3 Every subset of the x-axis is closed.
If F is subset of x − axis.
F c is union of open upper half plane and
Union of disks of equation (23) with point in F c .

4 Hm is Hausdorff.
Any two points on (including on x-axis) are separated by disks.

5 Hm is NOT second countable.
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Moore/Niemytzki plane 3

Topology is regular (can separate point and closed set).

For example, let P = (0, 0) (on the x−axis).
and let F = {(x , 0)| x ̸= 0} (subset of x−axis).

Let UP = B((0, 1), 1), an open disk type (23) ), with (0, 0) ∈ UP .

Cover F = {(x , 0)| x ̸= 0} with union of disks of type (23).

If |x | > 1 can easily find a tangent disk (say radius = (
√
2− 1)/2 )

that does not intersect UP .
If |x | ≤ 1 find a tangent disk that fits under γ(t) = 1−

√
1− t2.

The details are left as an exercise.
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Moore/Niemytzki plane 4

The Hm topology is NOT normal (e.g. you cannot separate two closed
sets).

F1 = {(q, 0)| q ∈ Q}
F2 = {(r , 0)| r ∈ Qc}

You cannot separate these using open sets.

This is obvious but difficult to prove.

There is a more complicated example which is a topological group.
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Direct Products

Definition

Let I be an index set and Xα be a topological space for every α ∈ I . The
direct product of Xα is defined as

∏
α∈I

Xα =

{
x : I →

⋃
α∈I

Xα

∣∣∣∣∣ x(α) ∈ Xα

}

The projection maps the product to the constituents.
For any β ∈ I define

πβ :
∏
α∈I

Xα → Xβ by πβ(x) = x(β) ∈ Xβ. (24)
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Direct Products: Tychonoff Topology

The Tychonoff topology is minimum topology with πβ continuous.

The product or Tychonoff topology has a base given by

π−1
α1

(U1) ∩ π−1
α2

(U2) ∩ · · · ∩ π−1
αa

(Ua) (25)

One can easily show the following:

1 If Xα are Hausdorff then
∏

α∈I Xα is Hausdorff.

2 If Xα are connected then
∏

α∈I Xα is connected.

3 If Xα are compact then
∏

α∈I Xα is compact (Tychonoff’s theorem).
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Direct Product of Groups

Let Gα be a collection of topological groups with α ∈ I .
The direct product of groups is

∏
α∈I

Gα =

{
x : I →

⋃
α∈I

Gα

∣∣∣∣∣ x(α) ∈ Gα

}

If each Gα is a group then define a product by

(xy)(α) = x(α)y(α). (26)

Inverses and the identity are defined in a natural way:

e(α) = e ∈ Gα

x−1(α) = (x(α))−1 ∈ Gα

One can easily show product and inverse are both continuous maps.
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Are Topological Groups Normal?

Let (Z ,+) be the topological group with discrete topology.
Let I = R and Gα = Z for each α ∈ I .

G =
∏
α∈I

Gα = ZR , (27)

is NOT normal (even though (Z ,+) is normal ).

G is Hausdorff so T0.

G is not second countable (that’s why we chose R ).

G is not locally compact even though (Z ,+) is.

Every neighborhood of e contains a copy of Z (e.g, there are small
subgroups).
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ZR is not normal (1 of 5)

We will show ZR is NOT normal.

Z has the discrete topology so we have a base of ZR of the form,

U(x0,B) =
{
x ∈ ZR

∣∣∣ x(α) = x0(α) ∀α ∈ B
}

= π−1
α1

({x0(α1)}) ∩ · · · ∩ π−1
αk

({x0(αk)}),

where B = {α1, · · · , αk} ⊂ I is a finite set.
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ZR is not normal (2 of 5)

Pn =
{
x ∈ ZR

∣∣∣ x is injective on x−1(Z − {n})
}
. (28)

If x ∈ Pn then {α| x(α) ̸= n} is countable.

If x ∈ Pn then {α| x(α) = n} is uncountable.

so if n ̸= m we have Pm ∩ Pn = ∅.
This is why we take ZR (e.g. R is uncountable).

Claim: Pn is closed.
x /∈ Pn means there is m ∈ Z and α, β ∈ I with x(α) = x(β) = m ̸= n.
x ∈ π−1

α ({m}) ∩ π−1
β ({m}), so complement of Pn is open.
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ZR is not normal (3 of 5)
P1 and P2 are distinct closed sets that do not intersect.

Assume we have open sets U1,U2 with P1 ⊂ U1 and P2 ⊂ U2.
We shall show U1 ∩ U2 ̸= ∅.

Define x1(α) = 1, so x1 ∈ P1.
There is base set with x1 ∈ U(x1,B1) ⊂ U1, with B1 = {α1, · · · , αn1}.
Now define x2(αi ) = i , αi ∈ B1 and x2(α) = 1 otherwise.
This means x2 ∈ P1.

Now iterate k = 2, 3, · · · ,
Since xk ∈ P1 there is base U(xk ,Bk) ⊂ U1 and we can choose Bk−1 ⊂ Bk

(just intersect with U(xk ,Bk−1)), so Bk = {α1, · · · , αn1 , · · ·αnk}
Define xk+1(αi ) = i , αi ∈ Bk and xk(α) = 1 otherwise,
xk+1 ∈ P1.
Exercise: fill in the details.
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ZR is not normal (4 of 5)

Define y∞ ∈ P2 by

y∞(α) =

{
j for α = αj ∈

⋃∞
i=1 Bi

2 else

}
We have y∞ ∈ P2 ⊂ U2.
Since y∞ ∈ P2 there is a finite C ⊂ I (base set) with

y∞ ∈ U(y∞,C ) ⊂ U2.

Define Ba =
⋃∞

i=1 Bi , (recall Bk ⊂ Bk+1)

C = (Ba ∩ C ) ∪ (Bc
a ∩ C ) = (Bk ∩ C ) ∪ (Bc

a ∩ C ) for some k . (29)

We have,
y∞|Bk

= xk+1|Bk
. (30)
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ZR is not normal (5 of 5)

We have

xk+1 ∈ U(xk+1,Bk+1) ⊂ U1 and y∞ ∈ U(y∞,C ) ⊂ U2. (31)

We shall construct an element z with

z ∈ U(xk+1,Bk+1) ∩ U(y∞,C ) ⊂ U1 ∩ U2.

Define z as follows,

z(α) =


xk+1(α) = j for α = αj ∈ Bk

xk+1(α) = 1 for α ∈ Bk+1 − Bk

y∞(α) else


This means z ∈ U(xk+1,Bk+1) ⊂ U1.
Since z(α) = y∞(α) for all α ∈ C we have z ∈ U(y∞,C ) ⊂ U2.

This means z ∈ U1 ∩ U2 ̸= ∅ and ZR is NOT normal.
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Normal Spaces

We state a theorem from topology.

Theorem

Given a Hausdorff topological space X . If X is regular and second
countable then X is normal.

We can use the following formulation for regular.
For ever x ∈ X and F closed with x ∈ F c there is an open U with

x ∈ U ⊂ cl(U) ⊂ F c . (32)

For completeness we include a proof of the theorem,
but the theorem and the proof are topology and are a bit of an aside.
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Sketch of proof

Let X be a Hausdorff, regular second countable topological space.
Let B be a countable base and let F1,F2 be disjoint closed sets.

For every a ∈ F1 there is an open Ua with a ∈ Ua ⊂ cl(Ua) ⊂ F c
2 .

We can choose Ua ∈ B, which is a countable set.
For b ∈ F2 there is an open Vb ∈ B with b ∈ Vb ⊂ cl(Vb) ⊂ F c

1 .

Since B is countable there are countable Ua,Vb denoted Uj ,Vj .
Iterate:

Ak = Uk∩cl(V1)
c∩· · ·∩cl(Vk)

c Bk = Vk∩cl(U1)
c∩· · ·∩cl(Uk)

c (33)

Show that Ak ∩ F1 = Uk ∩ F1 and Bk ∩ F1 = Vk ∩ F2.
Show that Ak ∩ Bm = ∅ for all k,m.

Show that
∞⋃
j=1

Aj and
∞⋃
j=1

Bj are the desired separating open sets.
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Metrizable

Urysohn’s metrization theorem states that every Hausdorff, regular, second
countable topological space is metrizable.

Going from open and closed sets to functions is an exacting enterprise, so
we leave it to the professionals.

There are refinements of this theorem which make it more precise.
See Nagata-Smirnov Metrization Theorem and the Bing Theorem.

Topological groups that are T0 and second countable are metrizable.
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Quotient Space: Cosets

Let H < G be a subgroup.

Form the coset space G/H.

Put a topology on G/H!
π : G → G/H (34)

defined by
π(g) = [gH] ∈ G/H. (35)

A subset [V ] ⊂ G/H is open iff π−1([V ]) = VH is open.

Proposition

This definition of open sets defines a topology on G/H.

This is a straightforward exercise.
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Quotient Space: H is closed.

Proposition

The coset space G/H is T1 iff H is closed.

Proof.

Let H be a subgroup of G (not necessarily normal).

H is closed . (36)

⇔ gH is closed for all g ∈ G . (37)

⇔ (gH)c is open , (38)

⇔ π−1 ([gH]c) = (gH)c is open, (39)

⇔ [gH]c is open, (40)

⇔ [gH] is closed for all g ∈ G . (41)

as x ∈ π−1([gH]c) ⇔ π(x) ∈ [gH]c ⇔ xH ∩ gH = ∅ ⇔ x /∈ gH. (42)

All singletons are closed if and only if G/H is T1.
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Quotient Space: T0 is Hausdorff (1/2)

Proposition

If the coset space G/H is T0 then the coset space G/H is Hausdorff.

Proof.

Let g1, g2 ∈ G and U1H ⊂ G be an open set with

[g1H] ∈ [U1H] and [g2H] /∈ [U1H]. (43)

This means g1 ∈ U1H and (g2H) ∩ U1H = ∅.

Let U0 = U1Hg
−1
1 ⇒ U0g1 = U1H.

We also have e ∈ U0 and (g2H) ∩ (U0g1) = (g2H) ∩ (U1H) = ∅.

There is an open U with U−1U ⊂ U0 and e ∈ U.
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Quotient Space: T0 is Hausdorff (2/2)

Proof.

We have

(g2H) ∩ (U1H) = ∅ and U0 = U1Hg
−1
1 and U−1U ⊂ U0. (44)

Claim(Ug1H) ∩ (Ug2H) = ∅
If u1g1h1 = u2g2h2 with u1, u2 ∈ U then

u−1
2 u1g1 = g2h2h

−1
1

⇒
(
U−1Ug1

)
∩ (g2H) ̸= ∅,

⇒
(
U1Hg

−1
1 g1

)
∩ (g2H) ̸= ∅,

⇒ (U1H) ∩ (g2H) ̸= ∅,

which is a contradiction.

So [Ug1H] and [Ug1H] are disjoint open sets and G/H is Hausdorff.
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Quotient Application

Let G act on X , G × X → G , denoted gx .
The isotropy sub-group of x0 ∈ X is

Gx0 = {g ∈ G | gx0 = x0} .

If the action is transitive (for every x , y ∈ X there is a gx = y ), we have

G/Gx0
∼= X . (45)

This is true for finite groups, topological spaces and even Lie Groups.
For finite groups see Hungerford [Hun74].

Example, SO(3) acts on S2 with isotropy group SO(2).
This is a homogeneous space,

SO(3)/SO(2) ∼= S2. (46)

This is for another talk.
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Quotient Group

Theorem

If G is a topological group and H < G a normal subgroup.
The quotient group G/H is a topological group.

Sketch: G/H has the quotient topology.
We need to show product and inverse are continuous.

For any g1, g2 ∈ G and any neighborhood VH of g1g2H.
There are open sets g1 ∈ U1 and g2 ∈ U2 with U1U2 ⊂ VH.
Claim: (U1H)(U2H) ⊂ VH.

u1h1u2h2 = u1u2(u
−1
y h1uy )h2 = u1u2h3 ∈ VH.

If VH is arbitrary neighborhood of g−1
1 H

there is an U1 with U−1
1 ⊂ VH ⇒ (U1H)−1 = HU−1

1 = U−1
1 H ⊂ VH.
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What if not T0? (1 of 2 )

What if a topological group G is not T0?

We will form a quotient group that is T0 (and so Hausdorff).

We shall look at cl({e}).

Recall the definition of closure:

Definition

Let X be a topological space and S ⊂ X . The closure of S , denoted cl(S),
is defined as

cl(S) = {x ∈ X | every neighborhood of x intersects S}

In Pontryagin [Pon46] the definition of topology on X is a closure function,
that maps S ⊂ X to cl(S) ⊂ X .
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What if not T0? (2 of 2 )

If cl({e}) = {e} then the singleton set {e} is closed.

If the singleton {e} is closed then Lg ({e}) = {g} is also closed.

If all singletons are closed then G is T1 and so T0 and Hausdorff.

So if G is NOT T0 then cl({e}) ̸= {e} and the singleton is NOT closed.
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cl({e}) is a group (1 of 2 )

Proposition

Let G be a topological group. cl({e}) is a subgroup of G and so is a
topological group.

Proof.

Let K = cl({e}). If g1, g2 ∈ K and V is any neighborhood of g1g2,
there are neighborhoods g1 ∈ U1, g2 ∈ U2 with

g1g2 ∈ U1U2 ⊂ V . (47)

But e ∈ U1, e ∈ U2 so e ∈ U1U2 ⊂ V ,
and g1g2 ∈ K .

Now we show that K is closed under inverse.
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cl({e}) is a group (2 of 2 )

Proof.

If g1 ∈ K = cl({e}) and V is any neighborhood of g−1
1 ,

there is a neighborhood U of g1 with

g−1
1 ∈ U−1 ⊂ V . (48)

But g1 ∈ K so e ∈ U ⇒ e ∈ V
so g−1

1 ∈ K and K is closed under inverses.

This means K = cl({e}) is a group.
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cl({e}) is Normal Subgroup

Proposition

Let G be a topological group. The subgroup K = cl({e}) is a normal
subgroup.

Proof.

Let h ∈ cl({e}), g ∈ G and V any neighborhood of ghg−1.

There is Ug with e ∈ Ug and gUgg
−1 ⊂ V (conjugation neighborhood).

Since e ∈ Ug ⇒ e ∈ gUgg
−1 ⊂ V .

This means ghg−1 ∈ cl({e}), and cl({e}) is normal.

Robert Lyons (TOC) The Topologies of Topological Groups January 25, 2024 58 / 65



What if G is not T0?

Let G be a topological group that is not T0.

The subgroup cl({e}) is normal.

The subgroup cl({e}) is closed.

The group G/cl({e}) is a topological group.

The group G/cl({e}) is T1 and so also Hausdorff.

This is Kolmogorov’s procedure for creating Hausdorff spaces out of
integrable functions.
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Topological Groups that are not T0

Example from Lp spaces.

L̃2(R) =

 f : R → C| f is measurable and

∫
R

∥f (t)∥2dt <∞


Form topology from semi-norm ∥f ∥2.

If f and g differ on a set of measure zero
then they are in the same open sets.
You cannot separate f and g so L̃p(R) is NOT T0.

This construction was first discussed by Kolmogorov (I think!?).
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Topological Groups That Are manifolds

Let G be a topological group.

If G is not T0 then form G/cl(e) instead.

Assume that G is T0, this implies G is Hausdorff.

G is regular.

Now assume that G is second countable.

This means G Is normal and metrizable.

What do we need to insure that G is a topological manifold (e.g. locally
Euclidean).
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Hilbert’s Fifth Problem (1/3)

If G is a topological manifold then it must be locally compact.

To guarantee that G is a Lie Group we must assume

G is a topological Group.

G is T0 (so Hausdorff).

G is second countable (so normal and metrizable).

G is locally compact.

But this is not sufficient.
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Hilbert’s Fifth Problem (2/3)

Definition

A topological group has no small groups if there is a neighborhood U of e
with the property that if H is a non-trivial subgroup of G then H is not a
subset of U.

Our example ZR has small sub-groups.
Topological Groups that are topological manifolds (e.g. locally Euclidean)
have no small subgroups.

This is another important necessary condition.

If there are no small subgroups then cl({e}) = {e} and the group is T1.
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Hilbert’s Fifth Problem (3/3)

Theorem

Let G be a locally compact, second countable topological group. If G has
no small subgroups then G is locally Euclidean.

The proof is result of work done in the 1950’s by,
A. Gleason and by D. Montgomery and L. Zippin (see [MZ74]).
One can also show the following,

Theorem

If G is a topological group that is locally Euclidean then G admits a
unique Lie Group structure.
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