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Definitions

Let X be a Hilbert space and let f : X → R ∪ {+∞} be a proper lsc convex function.

The subdifferential of f at x : ∂f (x) =
{
all subgradients of f at x

}
, where a vector u is called

a subgradient of f at x if

∀y ∈ X , f (y) ≥ f (x) + ⟨u, y − x⟩ .

The indicator function of a set Ω ⊂ X is ιΩ(x) :=

{
0, if x ∈ Ω,

+∞, otherwise.

The subdifferential of ιΩ is the normal cone operator of Ω

∂(ιΩ)(x) = NΩ(x) =
{
u ∈ X , ⟨u, z − x⟩ ≤ 0,∀z ∈ Ω

}
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Fermat’s Stationary

Let f , g : X → R ∪ {+∞} be proper lsc convex functions. The Fermat’s stationary condition:

x solves min
x∈X

f (x) ⇐⇒ 0 = ∇f (x) (f is differentiable)

x solves min
x∈X

f (x) ⇐⇒ 0 ∈ ∂f (x) (f is not differentiable)

x solves min f (x) + g(x) ⇐= 0 ∈ ∂f (x) + ∂g(x)

x solves min
x∈Ω

f (x) ⇐⇒ x solves min f (x) + ιΩ(x) ⇐= 0 ∈ ∂f (x) + NΩ(x)

x ∈ Ω1 ∩ Ω2 ⇐⇒ x solves min
x∈X

ιΩ1(x) + ιΩ2(x) ⇐= 0 ∈ NΩ1(x) + NΩ2(x)

So we may consider the inclusion problem: find an x such that

0 ∈ Ax + Bx where A,B : X ⇒ X are set-valued operators.
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Sum of Finitely Many Operators

Consider the problem
min
x∈X

f (x) s.t. x ∈ Ω2 ∩ · · · ∩ Ωm,

which is equivalent to
min
x∈X

f (x) + ιΩ2(x) + ιΩ3(x) + · · ·+ ιΩm(x)

So we may consider solving the inclusion problem

0 ∈ A1x + A2x + · · ·+ Amx .

(where Ai ’s are the subdifferential operators of the functions involved).

Let x := (x1, . . . , xm) ∈ Xm. Define

A(x) := A1x1 × · · · × Amxm

and B(x) := N∆(x) where ∆ :=
{
(x , . . . , x) ∈ Xm

}
.

Then
0 ∈ A1x + A2x + · · ·+ Amx ⇐⇒ 0 ∈ A(x) + B(x).
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Resolvent and Relaxed Resolvent

Let A : X ⇒ X be an operator.

The resolvent of A is defined by JA := (Id+A)−1

The reflected resolvent of A is defined by RA := J2A = 2JA − Id

Let λ > 0, the λ-relaxed resolvent of A is defined by JλA := (1− λ) Id+λJA

y ∈ JAx ⇐⇒ y = (Id+A)−1x ⇐⇒ x ∈ (Id+A)y = y + Ay

x
y

z

∈ Ay

The resolvent of the (convex) normal cone operator NΩ : X ⇒ X is the projection:

JNΩ
(x) = PΩ(x) =

{
y ∈ Ω , ∥x − y∥ = min

z∈Ω
∥x − z∥

}
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The Forward–Backward Algorithm

Consider the inclusion problem

0 ∈ Ax + Bx where A is single-valued.

Forward–Backward Algorithm:

Given xk , define

yk = xk − Axk ,

xk+1 = JByk

xk

ykxk+1

Ax
k

∈ Bx
k+1

▶ If xk+1 = xk = x , then −Ax ∈ Bx , so

0 ∈ Ax + Bx .
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The Douglas–Rachford (DR) Algorithm

xk+1 = Txk where T =
1

2
(Id+RBRA).

Illustration:

y = JAxk , z = RAx , w = JBz , t = RBz , xk+1 =
1

2
(xk + t).

xk

y

z

w

xk+1

t

∈ Ay

∈ Bw

▶ If xk+1 = xk , then y = w and 0 ∈ Ay + Bw . i.e., y is a solution.

Next, we will discuss conditions of A and B in order for these methods to converge.
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Monotonicity, Firm Nonexpansiveness, and Nonexpansiveness

An operator A is monotone if ∀(a, u), (b, v) ∈ grA, ⟨a− b, u − v⟩ ≥ 0.

A is maximally monotone if there is no monotone operator Â such that grA ⊊ gr Â.

An operator T is nonexpansive (on its domain) if for all x , y ∈ domT , ∥Tx − Ty∥ ≤ ∥x − y∥.
An operator T is firmly nonexpansive (on its domain) if for all x , y ∈ domT ,

∥Tx − Ty∥2 ≤ ∥x − y∥2 − ∥(Id−T )x − (Id−T )y∥2

a

u

b

v

a− b

u− v

Tx

x

Ty

y

Tx− Ty

(x− Tx)− (y − Ty)x− y

A is monotone ⇐⇒ T = (Id+A)−1 is firmly nonexpansive
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Monotonicity, Firm Nonexpansiveness, and Nonexpansiveness

Theorem (Minty’s Theorem)

Let A be monotone. Then A is maximally monotone if and only if dom(Id+A)−1 = X .

Theorem
T is firmly nonexpansive if and only if S := 2T − Id is nonexpansive.

Theorem (Krasnosel’skĭı–Mann)

Let D ⊂ X and let S : D → D be a nonexpansive operator such that FixS ̸= ∅. Let λk ∈ [0, 1]
be such that

∑∞
k=1 λk(1− λk) = +∞ and x0 ∈ D. Set

xk+1 = (1− λk)xk + λkSxk .

Then (xk)k∈N converges weakly to a fixed point of S .

▶ Let 0 < λ < 1. We say that an operator T is λ-averaged if T = (1− λ) Id+λS for some
nonexpansive operator S . So if T is a λ-averaged operator and FixT ̸= ∅, then the sequence
xk+1 = Txk converges weakly to a fixed point of T .
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Convergence Analysis

Theorem ([Lions-Mercier 1979])

Let A,B : X ⇒ X be two maximally monotone operators such that zer(A+ B) ̸= ∅. Let (xk)
be a sequence generated by the Douglas–Rachford algorithm. Then xk converges weakly to a
fixed point x ∈ FixT = FixRBRA and JAx ∈ zer(A+ B).

Proof.

A and B are monotone

=⇒ JA and JB are firmly nonexpansive

=⇒ RA = 2JA − Id and RB = 2JB − Id are nonexpansive

=⇒ RBRA is nonexpansive

=⇒ Apply the Krasnosel’skĭı–Mann Theorem: xk converges weakly to a fixed point. □

Theorem ([Svaiter ’11] and [Bauschke ’13])

The sequence JAxk converges weakly to JAx .
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An Application (Base on the collaboration with Valentin Koch, Autodesk, Inc.)

A common problem in civil engineering design is the grading of a parking lot or a building pad.
Within a given area, the engineer has to define grading slopes such that

▶ the grading site fits with existing structures.

▶ the drainage requirements on the surface are met.

▶ safety and comfort are taken into account.

▶ the engineer would like to change the existing surface as little as possible, in order to save
on earthwork costs.

The grading site is usually represented as a Triangulated Irregular Network (TIN). The engineer
is able to adjust the heights of the vertices in the triangulated grid, so that the newly obtained
mesh-grid satisfies the above requirements.

14



2D View of a Construction Site

# of vertices ≈ 5, 000

# of triangles: ≈ 7, 000
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3D View of a Construction Site

The Triangular Mesh:

V = {pj = (pj1, pj2, zj) ∈ R3}, |V | = n,

E ⊂
{
pipj

∣∣∣ pi , pj ∈ V
}
,

T ⊂
{
pipjpk

∣∣∣ pipj , pjpk , pkpi ∈ E
}
.

The variables are the elevations of the ver-
tices, written as a vector

z = (z1, z2, . . . , zn) ∈ Rn
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Conical Averagedness

Let θ > 0, we say that an operator T : X → X is conically θ-averaged if

T = (1− θ) Id+θN for some nonexpansive operator N.

θ = 1 : T is nonexpansive

θ = 1
2 : T is firmly nonexpansive

θ ∈ (0, 1) : T is θ-averaged

▶ Convex combinations of conically averaged operators are also conically averaged. In
particular, if T is conically θ-averaged, then (1− κ) Id+κT is conically κθ-averaged.

Theorem (Krasnosel’skĭı–Mann)

Let D ⊂ X and let T : D → D be a conically θ-averaged operator such that FixT ̸= ∅. Let
λ ∈ (0, 1θ ) and x0 ∈ D. Set

xk+1 = ((1− λ) Id+λT )xk = (1− λ)xk + λTxk .

Then (xk)k∈N converges to a fixed point of T .
18



Compositions of Conically Averaged Operators

Theorem ([Bartz-Dao-Ph. ’22])

Let T1,T2 : X → X be conically θ1-averaged and conically θ2-averaged. Suppose that either
θ1 = θ2 = 1 or θ1θ2 < 1. Let also ω ∈ R∖ {0}. Then

T :=
( 1

ω
T2

)(
ωT1

)
is conically θ-averaged with θ :=

{
1, θ1 = θ2 = 1,
θ1+θ2−2θ1θ2

1−θ1θ2
, θ1θ2 < 1.

In addition, if either θ1 > 1 or θ2 > 1, then θ > 1.
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Compositions of Conically Averaged Operators

Theorem ([Bartz-Dao-Ph. ’22])

Let Ti be conically θi -averaged for i = 1, . . . ,m (m ≥ 2). Let ωi ∈ R be such that
∏m

i=1 ωi = 1.
Set T = (ωmTm) · · · (ω1T1). Then

(i) If maxi θi ≤ 1, then T is nonexpansive.

(ii) If θi ̸= 1 for all i and

θk < 1 +
1∑k−1

i=1
θi

1−θi

,

Then T is conically θ-averaged with

θ :=
1

1 + 1∑m
i=1

θi
1−θi

(iii) If maxi θi < 1, then T is θ-averaged with θ < 1 given above.
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Generalized Monotonicity

Let A : X ⇒ X and α ∈ R. We say that A is

α-monotone if ∀(x , u), (y , v) ∈ grA, ⟨x − y , u − v⟩ ≥ α∥x − y∥2,
α-comonotone if ∀(x , u), (y , v) ∈ grA, ⟨x − y , u − v⟩ ≥ α∥u − v∥2,

and maximally α-monotone/comonotone if there is no α-monotone/comonotone operator
whose graph strictly contains grA.

▶ α = 0: monotone.

▶ α > 0: strongly monotone / strongly comonotone (= cocoercive).

▶ α < 0: weakly monotone/ weakly comonotone.

▶ A is α-monotone iff A−1 is α-comonotone.
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Generalized Monotonicity and Conical Averagedness [Bartz-Dao-Ph. ’22]

Theorem (α-comonotone operators)

Let α, λ > 0. The following are equivalent

(i) A is α-comonotone (i.e., α-cocoercive).

(ii) Id−λA is conically λ
2α -averaged.

Theorem (α-comonotone operators)

Let A be α-comonotone and suppose γ + α > 0. Let λ > 0. Then

(i) JγA is conically γ
2(γ+α) -averaged.

(ii) R = (1− λ) Id+λJγA is conically λγ
2(γ+α) -averaged.

Theorem (α-monotone operators)

Let A be α-monotone and let γ > 0 be such that 1 + γα > 0. Then

(i) JγA is (1 + γα)-comonotone.

(ii) 1
1−λR is conically λ

2(λ−1)(1+γα) -averaged.
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Forward-Backward Algorithms Revisited [Bartz-Dao-Ph. ’22]

The (relaxed) forward-backward algorithm: given γ > 0, κ > 0,

xn+1 = Txn where T = (1− κ) Id+κJγA(Id−γB)

Theorem
Suppose A is maximally α-comonotone, B is β-comonotone with β > 0. Suppose either

(i) α+ β = 0 and γ = 2β; or

(ii) α+ β > 0 and max{0, 2β − 2
√

β(α+ β) < γ < 2β + 2
√
β(α+ β).

Then T = (1− κ) Id+κJγA(Id−γB) is conically averaged.

Consequently, if zer(A+ B) ̸= ∅ and κ is appropriately chosen, then every sequence generated
by T converges weakly to some fixed point in zer(A+ B).

Theorem
If A is maximally monotone, B is β-comonotone, β > 0, and γ ∈ (0, 4β),
then T is conically averaged.

▶ The classical convergence analysis for the forward-backward algorithm requires γ ∈ (0, 2β).
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The Adaptive Douglas–Rachford Algorithm (aDR)

Problem: Solve

0 ∈ Ax + Bx

where A and B are maximally α- and β- monotone with α+ β ≥ 0; or
A and B are maximally α- and β- comonotone with α+ β ≥ 0.

▶ If A is α-monotone and B is β-monotone with α+ β ≥ 0, then

A+ B =
(
A− α− β

2
Id
)
+
(
B +

α− β

2
Id
)
=: Ã+ B̃.

Here, Ã and B̃ are both
(α+β

2

)
-monotone, in particular, monotone.

So, one can simply solve the problem 0 ∈ Ãx + B̃x using classical tools.

▶ We, however, examine the possibility of an algorithm on A and B!
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The aDR: Formulation

xk+1 = Txk , TA,B = (1− κ) Id+κR2R1,

where J1 := JγA, J2 := JδB

R1 := (1− λ) Id+λJ1, R2 := (1− µ) Id+µJ2,

γ > 0, δ > 0, (λ− 1)(µ− 1) = 1, δ = γ(λ− 1), κ ∈ ]0, 1[.

Illustration:

y = J1xk , z = R1xk , w = J2z , t = R2z ,

xk+1 = (1− κ)xk + κt.

If xk+1 = xk ∈ FixT , then

y = w and 0 ∈ Ay + Bw ,

i.e., y is a solution.

xk
y

z

w

xk+1

t

∈ γA
y

∈ δBw

▶ If λ = µ = 2, γ = δ > 0, then the adaptive DR becomes the classical DR.
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The aDR: Two Monotone Operators

Theorem ([Bartz-Dao-Ph. ’22])

Assume A,B are maximally α-monotone and maximally β-monotone, 1 + 2γα > 0, µ > 1, and

α+ β ≥ 0 and 2 + 2γα− ε ≤ µ ≤ 2 + 2γα+ ε with ε = 2
√
γ(1 + γα)(α+ β),

and either three strict inequalities happen simultaneously or none of them happens. Define

λ =
µ

µ− 1
, δ =

γ

µ− 1
, 0 < κ < κ∗,

where

κ∗ :=

{
1, α+ β = 0,
4γδ(1+γα)(1+δβ)−(γ+δ)2

2γδ(γ+δ)(α+β) , α+ β > 0.

Then the aDR operators TA,B and TB,A are conically κ
κ∗ -averaged.

Consequently, if (xk)k∈N is a sequence generated by the aDR algorithm, then (xk) converges
weakly to a fixed point.
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The aDR: Two Comonotone Operators

Theorem ([Bartz-Dao-Ph. ’22])

Assume A,B are maximally α-comonotone and maximally β-comonotone, γ + 2α > 0, and

α+ β ≥ 0 and γ + 2α− ε ≤ δ ≤ γ + 2α+ ε with ε = 2
√

(γ + α)(α+ β),

and either three strict inequalities happen simultaneously or none of them happens. Define

λ = 1 +
δ

γ
, µ = 1 +

γ

δ
, 0 < κ < κ∗,

where

κ∗ :=

{
1, α+ β = 0,
4(γ+α)(δ+β)−(γ+δ)2

2(γ+δ)(α+β) , α+ β > 0.

Then the aDR operators TA,B and TB,A are conically κ
κ∗ -averaged.

Consequently, if (xk)k∈N is a sequence generated by the aDR algorithm, then (xk) converges
weakly to a fixed point.
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Remark: Under- and Over-Reflecting the Resolvents

Let α > 0 and suppose that A is maximally α-monotone (“strong”),
B is maximally (−α)-monotone (“weak”).

Then
µ = 2 + 2γα > 2 and λ =

µ

µ− 1
< 2.

▶ Under-reflect the resolvent of the strongly monotone operator A (use λ < 2).

▶ Over-reflect the resolvent of the weakly monotone operator B (use µ > 2).

xk

y
z

w

xk+1

t

∈ γA
y

∈ δBw
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The Sum of Three Operators

Problem: Solve
0 ∈ Ax + Bx + Cx

where A,B : X ⇒ X are (generalized) monotone,
C : X → X is positively comonotone (i.e., cocoercive),
Resolvents of A and B are available,
Resolvents of C might not be available.

▶ A,B are maximally monotone: [Davis-Yin ’17] proposes the fixed-point operator

T := Id−JA + JB(2JA − Id−CJA).

One has
JA(FixT ) = zer(A+ B + C ).
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The Sum of Three Operators

Consider the fixed-point operator

T := Id−ηJγA + ηJδB((1− λ) Id+λJγA − δCJγA)

where η > 0, γ > 0, δ > 0, and λ = 1 + δ
γ . Then

JγA(FixT ) = zer(A+ B + C ).

Theorem ([Dao-Ph. ’21])

Suppose A,B are maximally α- and β-monotone with α+ β = 0 and C is σ-cocoercive with
σ > 0. Suppose γ > 0 and η > 0 satisfy

1 + 2γα > 0 and η∗ := 2 + 2γα− γ

2σ
> 0

Set δ = γ
1+2γα . Then the operator T is conically η

η∗ -averaged.

▶ [Dao-Ph. ’21] also includes a result for the case α+ β > 0.
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Thank you!
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