Analysis Seminar - Portland State University

Conical Averagedness and Fixed Point Algorithms

Hung Phan
Mathematical Sciences
University of Massachusetts Lowell

November 16, 2023

Based on joint work with Sedi Bartz and Minh N. Dao

Introduction

Resolvents and Fixed Point Algorithms

Monotonicity and Averaged Operators

Generalized Monotonicity and Conical Averagedness

Convergence Analysis of Fixed Point Algorithms

Sum of Three Operators

Definitions

Let X be a Hilbert space and let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper Isc convex function.
The subdifferential of f at $x: \partial f(x)=\{$ all subgradients of f at $x\}$, where a vector u is called a subgradient of f at x if

$$
\forall y \in X, \quad f(y) \geq f(x)+\langle u, y-x\rangle
$$

The indicator function of a set $\Omega \subset X$ is $\iota_{\Omega}(x):= \begin{cases}0, & \text { if } x \in \Omega, \\ +\infty, & \text { otherwise. }\end{cases}$
The subdifferential of ι_{Ω} is the normal cone operator of Ω

$$
\partial\left(\iota_{\Omega}\right)(x)=N_{\Omega}(x)=\{u \in X,\langle u, z-x\rangle \leq 0, \forall z \in \Omega\}
$$

Let $f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper Isc convex functions. The Fermat's stationary condition:

$$
\begin{aligned}
& \bar{x} \text { solves } \min _{x \in X} f(x) \quad \Longleftrightarrow 0=\nabla f(\bar{x}) \quad(f \text { is differentiable }) \\
& \bar{x} \text { solves } \min _{x \in X} f(x) \quad \Longleftrightarrow 0 \in \partial f(\bar{x}) \quad \text { (} f \text { is not differentiable) }
\end{aligned}
$$

\bar{x} solves $\min f(x)+g(x) \Longleftarrow 0 \in \partial f(\bar{x})+\partial g(\bar{x})$

$$
\begin{aligned}
\bar{x} \text { solves } \min _{x \in \Omega} f(x) & \Longleftrightarrow \bar{x} \text { solves } \min f(x)+\iota_{\Omega}(x) \Longleftarrow 0 \in \partial f(\bar{x})+N_{\Omega}(\bar{x}) \\
\bar{x} \in \Omega_{1} \cap \Omega_{2} & \Longleftrightarrow \bar{x} \text { solves } \min _{x \in X} \iota_{\Omega_{1}}(x)+\iota_{\Omega_{2}}(x) \Longleftarrow 0 \in N_{\Omega_{1}}(\bar{x})+N_{\Omega_{2}}(\bar{x})
\end{aligned}
$$

So we may consider the inclusion problem: find an x such that

$$
0 \in A x+B x \quad \text { where } A, B: X \rightrightarrows X \text { are set-valued operators. }
$$

Sum of Finitely Many Operators

Consider the problem

$$
\min _{x \in X} f(x) \quad \text { s.t. } \quad x \in \Omega_{2} \cap \cdots \cap \Omega_{m}
$$

which is equivalent to

$$
\min _{x \in X} f(x)+\iota_{\Omega_{2}}(x)+\iota_{\Omega_{3}}(x)+\cdots+\iota_{\Omega_{m}}(x)
$$

So we may consider solving the inclusion problem

$$
0 \in A_{1} x+A_{2} x+\cdots+A_{m} x
$$

(where A_{i} 's are the subdifferential operators of the functions involved).
Let $\mathbf{x}:=\left(x_{1}, \ldots, x_{m}\right) \in X^{m}$. Define

$$
\begin{aligned}
\boldsymbol{A}(x) & :=A_{1} x_{1} \times \cdots \times A_{m} x_{m} \\
\text { and } \quad \boldsymbol{B}(\mathbf{x}) & :=N_{\Delta}(\mathbf{x}) \quad \text { where } \quad \Delta:=\left\{(x, \ldots, x) \in X^{m}\right\} .
\end{aligned}
$$

Then

$$
0 \in A_{1} x+A_{2} x+\cdots+A_{m} x \quad \Longleftrightarrow \quad 0 \in \boldsymbol{A}(\mathbf{x})+\boldsymbol{B}(\mathbf{x})
$$

Introduction

Resolvents and Fixed Point Algorithms

Monotonicity and Averaged Operators

Generalized Monotonicity and Conical Averagedness

Convergence Analysis of Fixed Point Algorithms

Sum of Three Operators

Resolvent and Relaxed Resolvent

Let $A: X \rightrightarrows X$ be an operator.
The resolvent of A is defined by

$$
J_{A}:=(\operatorname{ld}+A)^{-1}
$$

The reflected resolvent of A is defined by

$$
R_{A}:=J_{A}^{2}=2 J_{A}-\mathrm{Id}
$$

Let $\lambda>0$, the λ-relaxed resolvent of A is defined by $J_{A}^{\lambda}:=(1-\lambda) \operatorname{ld}+\lambda J_{A}$

$$
y \in J_{A} x \Longleftrightarrow y=(\operatorname{ld}+A)^{-1} x \Longleftrightarrow x \in(\operatorname{ld}+A) y=y+A y
$$

$$
z
$$

The resolvent of the (convex) normal cone operator $N_{\Omega}: X \rightrightarrows X$ is the projection:

$$
J_{N_{\Omega}}(x)=P_{\Omega}(x)=\left\{y \in \Omega,\|x-y\|=\min _{z \in \Omega}\|x-z\|\right\}
$$

Consider the inclusion problem

$$
0 \in A x+B x \quad \text { where } A \text { is single-valued. }
$$

Consider the inclusion problem

$$
0 \in A x+B x \quad \text { where } A \text { is single-valued. }
$$

Forward-Backward Algorithm:

Given x_{k}, define

$$
\begin{aligned}
y_{k} & =x_{k}-A x_{k}, \\
x_{k+1} & =J_{B} y_{k}
\end{aligned}
$$

- If $x_{k+1}=x_{k}=\bar{x}$, then $-A \bar{x} \in B \bar{x}$, so

$$
0 \in A \bar{x}+B \bar{x}
$$

$$
x_{k+1}=T x_{k} \quad \text { where } \quad T=\frac{1}{2}\left(\mathrm{Id}+R_{B} R_{A}\right)
$$

Illustration:

$$
y=J_{A} x_{k}, \quad z=R_{A} x, \quad w=J_{B} z, \quad t=R_{B} z, \quad x_{k+1}=\frac{1}{2}\left(x_{k}+t\right) .
$$

- If $x_{k+1}=x_{k}$, then $y=w$ and $0 \in A y+B w$. i.e., y is a solution.

The Douglas-Rachford (DR) Algorithm

$$
x_{k+1}=T x_{k} \quad \text { where } \quad T=\frac{1}{2}\left(\mathrm{Id}+R_{B} R_{A}\right)
$$

Illustration:

$$
y=J_{A} x_{k}, \quad z=R_{A} x, \quad w=J_{B} z, \quad t=R_{B} z, \quad x_{k+1}=\frac{1}{2}\left(x_{k}+t\right) .
$$

- If $x_{k+1}=x_{k}$, then $y=w$ and $0 \in A y+B w$. i.e., y is a solution.

Next, we will discuss conditions of A and B in order for these methods to converge.

Introduction

Resolvents and Fixed Point Algorithms

Monotonicity and Averaged Operators

Generalized Monotonicity and Conical Averagedness

Convergence Analysis of Fixed Point Algorithms

Sum of Three Operators

Monotonicity, Firm Nonexpansiveness, and Nonexpansiveness

An operator A is monotone if $\forall(a, u),(b, v) \in \operatorname{gr} A, \quad\langle a-b, u-v\rangle \geq 0$.
A is maximally monotone if there is no monotone operator \hat{A} such that $\operatorname{gr} A \subsetneq \operatorname{gr} \hat{A}$.
An operator T is nonexpansive (on its domain) if for all $x, y \in \operatorname{dom} T,\|T x-T y\| \leq\|x-y\|$.
An operator T is firmly nonexpansive (on its domain) if for all $x, y \in \operatorname{dom} T$,

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}-\|(\mathrm{Id}-T) x-(\mathrm{Id}-T) y\|^{2}
$$

Monotonicity, Firm Nonexpansiveness, and Nonexpansiveness

An operator A is monotone if $\forall(a, u),(b, v) \in \operatorname{gr} A, \quad\langle a-b, u-v\rangle \geq 0$.
A is maximally monotone if there is no monotone operator \hat{A} such that $\operatorname{gr} A \subsetneq \operatorname{gr} \hat{A}$.
An operator T is nonexpansive (on its domain) if for all $x, y \in \operatorname{dom} T,\|T x-T y\| \leq\|x-y\|$.
An operator T is firmly nonexpansive (on its domain) if for all $x, y \in \operatorname{dom} T$,

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}-\|(\mathrm{Id}-T) x-(\mathrm{Id}-T) y\|^{2}
$$

A is monotone $\Longleftrightarrow T=(\mathrm{Id}+A)^{-1}$ is firmly nonexpansive

Theorem (Minty's Theorem)

Let A be monotone. Then A is maximally monotone if and only if $\operatorname{dom}(\operatorname{ld}+A)^{-1}=X$.

Theorem

T is firmly nonexpansive if and only if $S:=2 T$ - Id is nonexpansive.

Theorem (Krasnosel'skiir-Mann)

Let $D \subset X$ and let $S: D \rightarrow D$ be a nonexpansive operator such that $\operatorname{Fix} S \neq \varnothing$. Let $\lambda_{k} \in[0,1]$ be such that $\sum_{k=1}^{\infty} \lambda_{k}\left(1-\lambda_{k}\right)=+\infty$ and $x_{0} \in D$. Set

$$
x_{k+1}=\left(1-\lambda_{k}\right) x_{k}+\lambda_{k} S x_{k} .
$$

Then $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges weakly to a fixed point of S.
Let $0<\lambda<1$. We say that an operator T is λ-averaged if $T=(1-\lambda) \mathrm{Id}+\lambda S$ for some nonexpansive operator S. So if T is a λ-averaged operator and $\operatorname{Fix} T \neq \varnothing$, then the sequence $x_{k+1}=T x_{k}$ converges weakly to a fixed point of T.

Theorem ([Lions-Mercier 1979])

Let $A, B: X \rightrightarrows X$ be two maximally monotone operators such that $\operatorname{zer}(A+B) \neq \varnothing$. Let $\left(x_{k}\right)$ be a sequence generated by the Douglas-Rachford algorithm. Then x_{k} converges weakly to a fixed point $\bar{x} \in \operatorname{Fix} T=\operatorname{Fix} R_{B} R_{A}$ and $J_{A} \bar{x} \in \operatorname{zer}(A+B)$.

Proof.

A and B are monotone
$\Longrightarrow J_{A}$ and J_{B} are firmly nonexpansive
$\Longrightarrow R_{A}=2 J_{A}$ - Id and $R_{B}=2 J_{B}$ - Id are nonexpansive
$\Longrightarrow R_{B} R_{A}$ is nonexpansive
\Longrightarrow Apply the Krasnosel'skiï-Mann Theorem: x_{k} converges weakly to a fixed point.
Theorem ([Svaiter '11] and [Bauschke '13])
The sequence $J_{A} x_{k}$ converges weakly to $J_{A} \bar{x}$.

An Application (Base on the collaboration with Valentin Koch, Autodesk, Inc.)

A common problem in civil engineering design is the grading of a parking lot or a building pad. Within a given area, the engineer has to define grading slopes such that

- the grading site fits with existing structures.
- the drainage requirements on the surface are met.
- safety and comfort are taken into account.
- the engineer would like to change the existing surface as little as possible, in order to save on earthwork costs.
The grading site is usually represented as a Triangulated Irregular Network (TIN). The engineer is able to adjust the heights of the vertices in the triangulated grid, so that the newly obtained mesh-grid satisfies the above requirements.

2D View of a Construction Site

$\#$ of vertices $\approx 5,000$

\# of triangles: $\approx 7,000$

3D View of a Construction Site

The Triangular Mesh:

$$
\begin{aligned}
& V=\left\{p_{j}=\left(p_{j 1}, p_{j 2}, z_{j}\right) \in \mathbb{R}^{3}\right\},|V|=n, \\
& E \subset\left\{p_{i} p_{j} \mid p_{i}, p_{j} \in V\right\}, \\
& T \subset\left\{p_{i} p_{j} p_{k} \mid p_{i} p_{j}, p_{j} p_{k}, p_{k} p_{i} \in E\right\} .
\end{aligned}
$$

The variables are the elevations of the vertices, written as a vector

$$
z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{R}^{n}
$$

Introduction

Resolvents and Fixed Point Algorithms

Monotonicity and Averaged Operators

Generalized Monotonicity and Conical Averagedness

Convergence Analysis of Fixed Point Algorithms

Sum of Three Operators

Conical Averagedness

Let $\theta>0$, we say that an operator $T: X \rightarrow X$ is conically θ-averaged if

$$
\begin{aligned}
T=(1-\theta) \mathrm{Id}+\theta N & \\
& \text { for some nonexpansive operator } N . \\
& \theta=1
\end{aligned} \quad: \quad T \text { is nonexpansive } .
$$

- Convex combinations of conically averaged operators are also conically averaged. In particular, if T is conically θ-averaged, then $(1-\kappa) \mathrm{Id}+\kappa T$ is conically $\kappa \theta$-averaged.

Theorem (Krasnosel'skiï-Mann)

Let $D \subset X$ and let $T: D \rightarrow D$ be a conically θ-averaged operator such that $\operatorname{Fix} T \neq \varnothing$. Let $\lambda \in\left(0, \frac{1}{\theta}\right)$ and $x_{0} \in D$. Set

$$
x_{k+1}=((1-\lambda) \operatorname{ld}+\lambda T) x_{k}=(1-\lambda) x_{k}+\lambda T x_{k} .
$$

Then $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges to a fixed point of T.

Theorem ([Bartz-Dao-Ph. '22])
Let $T_{1}, T_{2}: X \rightarrow X$ be conically θ_{1}-averaged and conically θ_{2}-averaged. Suppose that either $\theta_{1}=\theta_{2}=1$ or $\theta_{1} \theta_{2}<1$. Let also $\omega \in \mathbb{R} \backslash\{0\}$. Then

$$
T:=\left(\frac{1}{\omega} T_{2}\right)\left(\omega T_{1}\right) \quad \text { is conically } \theta \text {-averaged with } \quad \theta:= \begin{cases}1, & \theta_{1}=\theta_{2}=1 \\ \frac{\theta_{1}+\theta_{2}-2 \theta_{1} \theta_{2}}{1-\theta_{1} \theta_{2}}, & \theta_{1} \theta_{2}<1\end{cases}
$$

In addition, if either $\theta_{1}>1$ or $\theta_{2}>1$, then $\theta>1$.

Theorem ([Bartz-Dao-Ph. '22])

Let T_{i} be conically θ_{i}-averaged for $i=1, \ldots, m(m \geq 2)$. Let $\omega_{i} \in \mathbb{R}$ be such that $\prod_{i=1}^{m} \omega_{i}=1$. Set $T=\left(\omega_{m} T_{m}\right) \cdots\left(\omega_{1} T_{1}\right)$. Then
(i) If $\max _{i} \theta_{i} \leq 1$, then T is nonexpansive.
(ii) If $\theta_{i} \neq 1$ for all i and

$$
\theta_{k}<1+\frac{1}{\sum_{i=1}^{k-1} \frac{\theta_{i}}{1-\theta_{i}}}
$$

Then T is conically θ-averaged with

$$
\theta:=\frac{1}{1+\frac{1}{\sum_{i=1}^{m} \frac{\theta_{i}}{1-\theta_{i}}}}
$$

(iii) If $\max _{i} \theta_{i}<1$, then T is θ-averaged with $\theta<1$ given above.

Let $A: X \rightrightarrows X$ and $\alpha \in \mathbb{R}$. We say that A is

$$
\begin{aligned}
\alpha \text {-monotone if } & \forall(x, u),(y, v) \in \operatorname{gr} A,
\end{aligned} \quad\langle x-y, u-v\rangle \geq \alpha\|x-y\|^{2},
$$

and maximally α-monotone/comonotone if there is no α-monotone/comonotone operator whose graph strictly contains $\operatorname{gr} A$.

- $\alpha=0$: monotone.
- $\alpha>0$: strongly monotone / strongly comonotone ($=$ cocoercive).
- $\alpha<0$: weakly monotone/ weakly comonotone.
- A is α-monotone iff A^{-1} is α-comonotone.

Generalized Monotonicity and Conical Averagedness [Bartz-Dao-Ph. '22]

Theorem (α-comonotone operators)
Let $\alpha, \lambda>0$. The following are equivalent
(i) A is α-comonotone (i.e., α-cocoercive).
(ii) Id $-\lambda A$ is conically $\frac{\lambda}{2 \alpha}$-averaged.

Theorem (α-comonotone operators)
Let A be α-comonotone and suppose $\gamma+\alpha>0$. Let $\lambda>0$. Then
(i) $J_{\gamma A}$ is conically $\frac{\gamma}{2(\gamma+\alpha)}$-averaged.
(ii) $R=(1-\lambda) \mathrm{Id}+\lambda J_{\gamma A}$ is conically $\frac{\lambda \gamma}{2(\gamma+\alpha)}$-averaged.

Theorem (α-monotone operators)
Let A be α-monotone and let $\gamma>0$ be such that $1+\gamma \alpha>0$. Then
(i) $J_{\gamma A}$ is $(1+\gamma \alpha)$-comonotone.
(ii) $\frac{1}{1-\lambda} R$ is conically $\frac{\lambda}{2(\lambda-1)(1+\gamma \alpha)}$-averaged.

Introduction

Resolvents and Fixed Point Algorithms

Monotonicity and Averaged Operators

Generalized Monotonicity and Conical Averagedness

Convergence Analysis of Fixed Point Algorithms

Sum of Three Operators

The (relaxed) forward-backward algorithm: given $\gamma>0, \kappa>0$,

$$
x_{n+1}=T x_{n} \quad \text { where } \quad T=(1-\kappa) \operatorname{ld}+\kappa J_{\gamma A}(\operatorname{ld}-\gamma B)
$$

Theorem

Suppose A is maximally α-comonotone, B is β-comonotone with $\beta>0$. Suppose either
(i) $\alpha+\beta=0$ and $\gamma=2 \beta$; or
(ii) $\alpha+\beta>0$ and $\max \{0,2 \beta-2 \sqrt{\beta(\alpha+\beta)}<\gamma<2 \beta+2 \sqrt{\beta(\alpha+\beta)}$.

Then $T=(1-\kappa) \operatorname{ld}+\kappa J_{\gamma A}(\mathrm{Id}-\gamma B)$ is conically averaged.
Consequently, if $\operatorname{zer}(A+B) \neq \varnothing$ and κ is appropriately chosen, then every sequence generated by T converges weakly to some fixed point in $\operatorname{zer}(A+B)$.

The (relaxed) forward-backward algorithm: given $\gamma>0, \kappa>0$,

$$
x_{n+1}=T x_{n} \quad \text { where } \quad T=(1-\kappa) \operatorname{ld}+\kappa J_{\gamma A}(\operatorname{ld}-\gamma B)
$$

Theorem

Suppose A is maximally α-comonotone, B is β-comonotone with $\beta>0$. Suppose either
(i) $\alpha+\beta=0$ and $\gamma=2 \beta$; or
(ii) $\alpha+\beta>0$ and $\max \{0,2 \beta-2 \sqrt{\beta(\alpha+\beta)}<\gamma<2 \beta+2 \sqrt{\beta(\alpha+\beta)}$.

Then $T=(1-\kappa) \operatorname{ld}+\kappa J_{\gamma A}(\operatorname{Id}-\gamma B)$ is conically averaged.
Consequently, if $\operatorname{zer}(A+B) \neq \varnothing$ and κ is appropriately chosen, then every sequence generated by T converges weakly to some fixed point in $\operatorname{zer}(A+B)$.

Theorem

If A is maximally monotone, B is β-comonotone, $\beta>0$, and $\gamma \in(0,4 \beta)$, then T is conically averaged.

Forward-Backward Algorithms Revisited [Bartz-Dao-Ph. '22]

The (relaxed) forward-backward algorithm: given $\gamma>0, \kappa>0$,

$$
x_{n+1}=T x_{n} \quad \text { where } \quad T=(1-\kappa) \operatorname{ld}+\kappa J_{\gamma A}(\operatorname{ld}-\gamma B)
$$

Theorem

Suppose A is maximally α-comonotone, B is β-comonotone with $\beta>0$. Suppose either
(i) $\alpha+\beta=0$ and $\gamma=2 \beta$; or
(ii) $\alpha+\beta>0$ and $\max \{0,2 \beta-2 \sqrt{\beta(\alpha+\beta)}<\gamma<2 \beta+2 \sqrt{\beta(\alpha+\beta)}$.

Then $T=(1-\kappa) \mathrm{Id}+\kappa J_{\gamma A}(\mathrm{Id}-\gamma B)$ is conically averaged.
Consequently, if $\operatorname{zer}(A+B) \neq \varnothing$ and κ is appropriately chosen, then every sequence generated by T converges weakly to some fixed point in $\operatorname{zer}(A+B)$.

Theorem

If A is maximally monotone, B is β-comonotone, $\beta>0$, and $\gamma \in(0,4 \beta)$, then T is conically averaged.

- The classical convergence analysis for the forward-backward algorithm requires $\gamma \in(0,2 \beta)$.

The Adaptive Douglas-Rachford Algorithm (aDR)

Problem: Solve

$$
0 \in A x+B x
$$

where $\quad A$ and B are maximally α - and β - monotone with $\alpha+\beta \geq 0$; or A and B are maximally α - and β - comonotone with $\alpha+\beta \geq 0$.

Problem: Solve

$$
0 \in A x+B x
$$

where $\quad A$ and B are maximally α - and β - monotone with $\alpha+\beta \geq 0$; or A and B are maximally α - and β - comonotone with $\alpha+\beta \geq 0$.

- If A is α-monotone and B is β-monotone with $\alpha+\beta \geq 0$, then

$$
A+B=\left(A-\frac{\alpha-\beta}{2} \mathrm{Id}\right)+\left(B+\frac{\alpha-\beta}{2} \mathrm{Id}\right)=: \widetilde{A}+\widetilde{B} .
$$

Here, \widetilde{A} and \widetilde{B} are both $\left(\frac{\alpha+\beta}{2}\right)$-monotone, in particular, monotone.
So, one can simply solve the problem $0 \in \widetilde{A} x+\widetilde{B} x$ using classical tools.

Problem: Solve

$$
0 \in A x+B x
$$

where $\quad A$ and B are maximally α - and β - monotone with $\alpha+\beta \geq 0$; or A and B are maximally α - and β - comonotone with $\alpha+\beta \geq 0$.

- If A is α-monotone and B is β-monotone with $\alpha+\beta \geq 0$, then

$$
A+B=\left(A-\frac{\alpha-\beta}{2} \mathrm{Id}\right)+\left(B+\frac{\alpha-\beta}{2} \mathrm{Id}\right)=: \widetilde{A}+\widetilde{B}
$$

Here, \widetilde{A} and \widetilde{B} are both $\left(\frac{\alpha+\beta}{2}\right)$-monotone, in particular, monotone.
So, one can simply solve the problem $0 \in \widetilde{A} x+\widetilde{B} x$ using classical tools.

- We, however, examine the possibility of an algorithm on A and B !

$$
x_{k+1}=T x_{k} \quad, \quad T_{A, B}=(1-\kappa) \operatorname{ld}+\kappa R_{2} R_{1}
$$

where $J_{1}:=J_{\gamma A}, J_{2}:=J_{\delta B}$

$$
\begin{aligned}
& R_{1}:=(1-\lambda) \operatorname{ld}+\lambda J_{1}, R_{2}:=(1-\mu) \operatorname{ld}+\mu J_{2}, \\
& \gamma>0, \delta>0, \quad(\lambda-1)(\mu-1)=1, \quad \delta=\gamma(\lambda-1), \quad \kappa \in] 0,1[.
\end{aligned}
$$

Illustration:

$$
\begin{aligned}
& y=J_{1} x_{k}, z=R_{1} x_{k}, w=J_{2} z, t=R_{2} z, \\
& x_{k+1}=(1-\kappa) x_{k}+\kappa t .
\end{aligned}
$$

If $x_{k+1}=x_{k} \in \operatorname{Fix} T$, then

$$
y=w \text { and } 0 \in A y+B w,
$$

i.e., y is a solution.

- If $\lambda=\mu=2, \gamma=\delta>0$, then the adaptive DR becomes the classical DR,

Theorem ([Bartz-Dao-Ph. '22])

Assume A, B are maximally α-monotone and maximally β-monotone, $1+2 \gamma \alpha>0, \mu>1$, and

$$
\alpha+\beta \geq 0 \quad \text { and } \quad 2+2 \gamma \alpha-\varepsilon \leq \mu \leq 2+2 \gamma \alpha+\varepsilon \quad \text { with } \quad \varepsilon=2 \sqrt{\gamma(1+\gamma \alpha)(\alpha+\beta)}
$$

and either three strict inequalities happen simultaneously or none of them happens. Define

$$
\lambda=\frac{\mu}{\mu-1} \quad, \quad \delta=\frac{\gamma}{\mu-1} \quad, \quad 0<\kappa<\kappa^{*}
$$

where

$$
\kappa^{*}:= \begin{cases}1, & \alpha+\beta=0 \\ \frac{4 \gamma \delta(1+\gamma \alpha)(1+\delta \beta)-(\gamma+\delta)^{2}}{2 \gamma \delta(\gamma+\delta)(\alpha+\beta)}, & \alpha+\beta>0\end{cases}
$$

Then the aDR operators $T_{A, B}$ and $T_{B, A}$ are conically $\frac{\kappa}{\kappa^{*}}$-averaged.
Consequently, if $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a sequence generated by the aDR algorithm, then $\left(x_{k}\right)$ converges weakly to a fixed point.

Theorem ([Bartz-Dao-Ph. '22])
Assume A, B are maximally α-comonotone and maximally β-comonotone, $\gamma+2 \alpha>0$, and

$$
\alpha+\beta \geq 0 \quad \text { and } \quad \gamma+2 \alpha-\varepsilon \leq \delta \leq \gamma+2 \alpha+\varepsilon \quad \text { with } \quad \varepsilon=2 \sqrt{(\gamma+\alpha)(\alpha+\beta)},
$$

and either three strict inequalities happen simultaneously or none of them happens. Define

$$
\lambda=1+\frac{\delta}{\gamma} \quad, \quad \mu=1+\frac{\gamma}{\delta} \quad, \quad 0<\kappa<\kappa^{*}
$$

where

$$
\kappa^{*}:= \begin{cases}1, & \alpha+\beta=0 \\ \frac{4(\gamma+\alpha)(\delta+\beta)-(\gamma+\delta)^{2}}{2(\gamma+\delta)(\alpha+\beta)}, & \alpha+\beta>0 .\end{cases}
$$

Then the aDR operators $T_{A, B}$ and $T_{B, A}$ are conically $\frac{\kappa}{\kappa^{*}}$-averaged.
Consequently, if $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a sequence generated by the aDR algorithm, then $\left(x_{k}\right)$ converges weakly to a fixed point.

Remark: Under- and Over-Reflecting the Resolvents

Let $\alpha>0$ and suppose that A is maximally α-monotone ("strong"), B is maximally $(-\alpha)$-monotone ("weak").
Then

$$
\mu=2+2 \gamma \alpha>2 \quad \text { and } \quad \lambda=\frac{\mu}{\mu-1}<2
$$

- Under-reflect the resolvent of the strongly monotone operator A (use $\lambda<2$).
- Over-reflect the resolvent of the weakly monotone operator B (use $\mu>2$).

Introduction

Resolvents and Fixed Point Algorithms

Monotonicity and Averaged Operators

Generalized Monotonicity and Conical Averagedness

Convergence Analysis of Fixed Point Algorithms

Sum of Three Operators

Problem: Solve

$$
0 \in A x+B x+C x
$$

where $\quad A, B: X \rightrightarrows X$ are (generalized) monotone, $C: X \rightarrow X$ is positively comonotone (i.e., cocoercive), Resolvents of A and B are available, Resolvents of C might not be available.

Problem: Solve

$$
0 \in A x+B x+C x
$$

where $\quad A, B: X \rightrightarrows X$ are (generalized) monotone, $C: X \rightarrow X$ is positively comonotone (i.e., cocoercive),
Resolvents of A and B are available,
Resolvents of C might not be available.

- A, B are maximally monotone: [Davis-Yin'17] proposes the fixed-point operator

$$
T:=\operatorname{Id}-J_{A}+J_{B}\left(2 J_{A}-\mathrm{Id}-C J_{A}\right) .
$$

One has

$$
J_{A}(\operatorname{Fix} T)=\operatorname{zer}(A+B+C)
$$

The Sum of Three Operators

Consider the fixed-point operator

$$
T:=\operatorname{Id}-\eta J_{\gamma A}+\eta J_{\delta B}\left((1-\lambda) \operatorname{Id}+\lambda J_{\gamma A}-\delta C J_{\gamma A}\right)
$$

where $\eta>0, \gamma>0, \delta>0$, and $\lambda=1+\frac{\delta}{\gamma}$. Then

$$
J_{\gamma A}(\operatorname{Fix} T)=\operatorname{zer}(A+B+C) .
$$

Theorem ([Dao-Ph. '21])

Suppose A, B are maximally α - and β-monotone with $\alpha+\beta=0$ and C is σ-cocoercive with $\sigma>0$. Suppose $\gamma>0$ and $\eta>0$ satisfy

$$
1+2 \gamma \alpha>0 \quad \text { and } \quad \eta^{*}:=2+2 \gamma \alpha-\frac{\gamma}{2 \sigma}>0
$$

Set $\delta=\frac{\gamma}{1+2 \gamma \alpha}$. Then the operator T is conically $\frac{\eta}{\eta^{*}}$-averaged.

- [Dao-Ph. '21] also includes a result for the case $\alpha+\beta>0$.

Thank you！

圊 Bartz，S．，Dao，M．N．，Phan，H．M．：Conical averagedness and convergence analysis of fixed point algorithms，
Journal of Global Optimization 82，351－373（2022）
囯 Bartz，S．，Campoy，R．，Phan，H．M．：Demiclosedness principles for generalized nonexpansive mappings， J．Optim．Theory Appl．186（3），759－778（2020）

嗇 Bauschke，H．H．：New demiclosedness principles for（firmly）nonexpansive operators．In：Bailey D． et al．（eds）Computational and Analytical Mathematics，Springer Proceedings in Mathematics \＆ Statistics．Springer，New York（2013）

围 Dao，M．N．，Phan，H．M．：An adaptive splitting algorithm for the sum of two generalized monotone operators and one cocoercive operator，Fixed Point Theory and Algorithms for Sciences and Engi－ neering（2021）

嗇 Dao，M．N．，Phan，H．M．：Adaptive Douglas－Rachford splitting algorithm for the sum of two operators， SIAM J．Optim．29（4），2697－2724（2019）
V．R．Koch and H．M．Phan，Optimization of triangular networks with spatial constraints，Optim．Meth－ ods Softw．（2019），DOI：10．1080／10556788．2019．1604703．

Dao，M．N．，Phan，H．M．：An adaptive splitting algorithm for the sum of two generalized monotone operators and one cocoercive operator，Fixed Point Theory and Algorithms for Sciences and Engi－ neering（2021）

Davis，D．，Yin，W．：A three－operator splitting scheme and its optimization applications Set－Valued Var．Anal．25（4），829－858（2017）

围 Douglas，J．，Rachford，H．H．：On the numerical solution of the heat condition problem in 2 and 3 space variables，Trans．AMS．82，421－439（1956）

围 Guo，K．，Han，D．，Yuan，X．：Convergence analysis of Douglas－Rachford splitting method for＂strongly ＋weakly＂convex programming，SIAM J．Numer．Anal．55（4），1549－1577（2017）．

围 Lions，P．L．，Mercier，B．：Splitting algorithms for the sum of two nonlinear operators，SIAM J．Numer． Anal．16，964－979（1979）

囯 Svaiter，B．F．：On weak convergence of the Douglas－Rachford method．SIAM J．Control Optim．49（1）， 280－287（2011）

Notes

