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Nuclear Vs Trace-Class

X is a Banach space.
An operator T on X is said to be nuclear if there exists a sequence (hn) in
X and a sequence (γn) in X ∗ with

∑
n ∥hn∥∥γn∥ < ∞ such that

T =
∑
n

hn ⊗ γn.

For h ∈ X and γ ∈ X ∗, the rank-one operator h ⊗ γ on X is defined by

(h ⊗ γ)(x) = γ(x)h (x ∈ X ).

H is a Hilbert space.
An operator T on H is said to be of trace class if it has the form

T (x) =
∑
n

sn⟨x , fn⟩gn (x ∈ H) (1)

where (fn) and (gn) are orthonormal sequences in H, and (sn) is a
summable sequence of positive real numbers.
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Nuclear implies trace class

For f , g ∈ H, we form the rank-one operator g ⊗ f on H by

(g ⊗ f )(x) = ⟨x , f ⟩g (x ∈ H).

An operator T on H is said to be nuclear if, in (1) above, we require that
∥fn∥ = 1, ∥gn∥ = 1 for all n.

Theorem

If T is nuclear on the Hilbert space H, then T is trace class.

Proof. We will show that the singular sequence of T is summable. Since
T is nuclear, it is the operator-norm limit of finite rank operators, hence
compact. It therefore has a Singular-Value Decomposition
T =

∑
j sj(fj ⊗ ej), with each sj ≥ 0, and with (fj) and (ej) orthonormal

lists of vectors in H. Fix an index n and observe that

Ten =
∑
j

sj⟨en, ej⟩fj = snfn.

So,
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sn = ⟨Ten, fn⟩. (2)

Now the nuclear representation of T is T =
∑

j hj ⊗ γj , where∑
j ∥hj∥∥γj∥ < ∞. (Now γj is just a vector in H.)

Thus
Ten =

∑
j

(hj ⊗ γj)en =
∑
j

⟨en, γj⟩hj .

It follows from (2) above that

sn = ⟨Ten, fn⟩ =
∑
j

⟨en, γj⟩⟨hj , fn⟩ ≤
∑
j

|⟨en, γj⟩||⟨hj , fn⟩|.

Therefore,∑
n

sn ≤
∑
n

∑
j

|⟨en, γj⟩||⟨hj , fn⟩| =
∑
j

∑
n

|⟨en, γj⟩||⟨hj , fn⟩|

≤
∑
j

(∑
n

|⟨en, γj⟩|2
)1/2(∑

n

|⟨hj , fn⟩|2
)1/2

=
∑
j

∥γj∥∥hj∥ < ∞.
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Trace-Class Operators

Recall: For each T ∈ B(H), the Spectral Theorem provides for the
positive operator T ∗T a unique positive square root |T | :=

√
T ∗T .

We say that T ∈ B(H) belongs to the Trace-Class (B1(H)) whenever∑
n⟨|T |en, en⟩ < ∞ for some basis (en). Here |T | is the positive

square root of the positive operator T ∗T .

If T ∈ B1(H), we call the convergent and basis-independent series∑
n⟨|T |en, en⟩ the trace norm of T , and denote it by

∥T∥1 :=
∑

n⟨|T |en, en⟩ .
Indeed, since T is of trace-class, it is compact (see below!). Therefore T
has a Singular-Value Decomposition T =

∑
j sj(fj ⊗ ej), with each sj ≥ 0,

and with (fj) and (ej) orthonormal sequences in H.
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Then
T ∗T =

∑
j

s2j (ej ⊗ ej)

with |T | :=
√
T ∗T =

∑
j sj(ej ⊗ ej),

and so |T |ek = skek .
Now

∞ > ∥T∥1 =
∑
k

⟨|T |ek , ek⟩ =
∑
k

sk .

If (en) is a basis for H, define the trace of T , tr : B1(H) → C by

tr(T ) :=
∑
n

⟨Ten, en⟩.

If dim H < ∞, then tr(T ) is precisely the sum of the diagonal terms of
any matrix representation of T .
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Theorem (Polar Decomposition).

If T ∈ B(H) then:

(a) There exists a partial isometry V such that T = V |T |, and
(b) V ∗ is a partial isometry with V ∗T = |T |.

Theorem

Every Trace-class operator is compact.

Proof. Fix a trace-class operator T on H, and a basis (en) for H. Let S
denote the unique positive square root of |T |. Then

∞ >
∑
n

⟨|T |en, en⟩ =
∑
n

⟨S2en, en⟩ =
∑
n

⟨Sen, Sen⟩ =
∑
n

∥Sen∥2.

Conclusion: S is Hilbert-Schmidt, hence compact, so |T | = S2 is compact.
By the Polar Decomposition, T = W |T |, where W is a partial isometry.
Therefore, T is the product of a bounded operator and a compact one, so
is compact.
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Corollary (B1(H) ⊂ B2(H)× B2(H)).

Every trace-class operator is the product of two Hilbert-Schmidt operators.

Proof. From the proof above, we have, for T ∈ B1(H) :

T = W |T | = (WS)S

where S is the Hilbert-Schmidt and W a bounded operator on H. Since
the Hilbert-Schmidt operators form an ideal in B(H), the operator WS is
also Hilbert-Schmidt, and we are done.

Theorem

The Trace Theorem. If T ∈ B1(h), and (en) is a basis for H, then the
series tr(T ) :=

∑
n⟨Ten, en⟩ is absolutely convergent, with its sum

independent of the choice of the basis (en).
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Proof. Write T = QS , a product of two Hilbert-Schmidt operators. Then

∑
n

|⟨Ten, en⟩| =
∑
n

|⟨Sen,Q∗en⟩| ≤
∑
n

∥Sen∥∥Q∗en∥

≤

(∑
n

∥Sen∥2
)1/2(∑

n

∥Qen∥2
)1/2

= ∥S∥2∥Q∥2 < ∞.

Theorem (B2(H)× B2(H) ⊂ B1(H)).

If S and T are Hilbert-Schmidt operators, then ST is trace-class, and
∥ST∥1 ≤ ∥S∥2∥T∥2.
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Proof. We need to show that if (xn) is a basis for H then
∑

n⟨|ST |xn, xn⟩
is finite. Recall from The Polar Decomposition that we can write
|ST | = V ∗ST , where V is a partial isometry. Thus,

∥ST∥1 =
∑
n

⟨|ST |xn, xn⟩ =
∑
n

⟨V ∗STxn, xn⟩ =
∑
n

⟨Txn, (V ∗S)∗xn⟩

≤
(∑

n

∥Txn∥2
)1/2(∑

n

∥(V ∗S)∗xn∥2
)1/2

= ∥T∥2∥(V ∗S)∗∥2 = ∥T∥2∥(V ∗S)∥2
≤ ∥T∥2∥V ∗∥∥S∥2 = ∥T∥2∥S∥2.

Theorem (B2(H)× B2(H) = B1(H)).

An operator is trace class if and only if it is the product of two
Hilbert-Schmidt operators.
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Lemma

If A ∈ B(H), then the following are equivalent:

(a) A ∈ B1(H)

(b) |A| = (A∗A)1/2 ∈ B1(H)

(c) |A|1/2 ∈ B2(H)

(d) tr(|A|) < ∞.

Proof. (d) ⇒ (c). We have

∥ |A|1/2∥22 =
∑
n

∥ |A|1/2en∥2 =
∑
n

⟨|A|1/2en, |A|1/2en⟩ =
∑
n

⟨|A|en, en⟩ =

tr(|A|).

Corollary

If A ∈ B1(H) and T ∈ B(H), then∣∣∣ tr(T |A|)
∣∣∣ ≤ ∥T∥∥A∥1.
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Proof. |A|1/2 ∈ B2(H) by Lemma and, hence, T |A|1/2 and |A|1/2 T
belong to B2(H). Also

tr(T |A|) =
∑
n

⟨T |A|1/2|A|1/2en, en⟩ =
∑
n

⟨|A|1/2en, |A|1/2 T ∗en⟩.

Using the Cauchy-Schwartz inequality gives∣∣∣ tr(T |A|)
∣∣∣ ≤∑

n

∣∣∣⟨|A|1/2en, |A|1/2 T ∗en⟩
∣∣∣ ≤∑

n

∥ |A|1/2en∥ ∥ |A|1/2 T ∗en∥ ≤

(∑
n

∥ |A|1/2en∥2
)1/2(∑

n

∥ |A|1/2 T ∗en∥2
)1/2

= ∥ |A|1/2∥2 ∥ |A|1/2 T ∗∥2 ≤

∥ |A|1/2∥2 ∥ |A|1/2∥2 ∥T∥ = ∥ |A|1/2∥22 ∥T∥.

But

∥ |A|1/2∥22 :=
∑
n

∥ |A|1/2en∥2 =
∑
n

⟨|A|1/2en, |A|1/2en⟩ := tr(|A|) = ∥A∥1.

This completes the proof.
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Thank you
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