Nuclear Operators on Banach Spaces

Serge Phanzu
Department of Mathematics and Statistics
Portland State University

Analysis Seminar, Nov 2023

Rank-One Operators

Lemma

Let X and Y be Banach spaces, $f \in X^{*}$ and $y \in Y$. Let $f \oplus y: X \rightarrow Y$ be defined by the formula $(f \oplus y)(x)=f(x) y$. Then
(1) $f \oplus y \in B(X, Y)$ with $\|f \oplus y\|_{*}=\|f\|_{*}\|y\|$ and $\operatorname{dim}(f \oplus y)[X] \leq 1$; indeed $\operatorname{dim}(f \oplus y)[X]=1$ if $f \neq 0$ and $y \neq 0$.
(2) for any sequence $\left(f_{n}\right)$ in X^{*} and $\left(y_{n}\right)$ in Y such that
$\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{*}\left\|y_{n}\right\|<\infty$, the sequence $\left(\sum_{k=1}^{n} f_{k} \oplus y_{k}\right)_{n}$ is Cauchy for the
operator-norm $\left\|\|_{*}\right.$. (Thus the series $\sum_{n=1}^{\infty} f_{n} \oplus y_{n}$ converges for $\| \|_{*}$ to a bounded linear operator on X.)

Rank-One Operators

Lemma

Let X and Y be Banach spaces, $f \in X^{*}$ and $y \in Y$. Let $f \oplus y: X \rightarrow Y$ be defined by the formula $(f \oplus y)(x)=f(x) y$. Then
(1) $f \oplus y \in B(X, Y)$ with $\|f \oplus y\|_{*}=\|f\|_{*}\|y\|$ and $\operatorname{dim}(f \oplus y)[X] \leq 1$; indeed $\operatorname{dim}(f \oplus y)[X]=1$ if $f \neq 0$ and $y \neq 0$.
(2) for any sequence $\left(f_{n}\right)$ in X^{*} and $\left(y_{n}\right)$ in Y such that
$\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{*}\left\|y_{n}\right\|<\infty$, the sequence $\left(\sum_{k=1}^{n} f_{k} \oplus y_{k}\right)_{n}$ is Cauchy for the
operator-norm $\left\|\|_{*}\right.$. (Thus the series $\sum_{n=1}^{\infty} f_{n} \oplus y_{n}$ converges for $\| \|_{*}$ to a bounded linear operator on X.)

Proof. (1) Linearity of $f \oplus y$ is easily verified. If $x \in X$ with $\|x\| \leq 1$, then

$$
\|(f \oplus y)(x)\|=\|f(x) y\|=|f(x)|\|y\| \leq\|f\|\|y\| .
$$

Rank-One Operators

Furthermore,

$$
\begin{aligned}
\|f \oplus y\|_{*} & =\sup _{\|x\| \leq 1}\{\|(f \oplus y)(x)\|: x \in X\} \\
& =\sup _{\|x\| \leq 1}\{\|f(x) y\|: x \in X\} \\
& =\sup _{\|x\| \leq 1}\{|f(x)|\|y\|: x \in X\} \\
& =\|f\|_{*}\|y\| .
\end{aligned}
$$

Rank-One Operators

Furthermore,

$$
\begin{aligned}
\|f \oplus y\|_{*} & =\sup _{\|x\| \leq 1}\{\|(f \oplus y)(x)\|: x \in X\} \\
& =\sup _{\|x\| \leq 1}\{\|f(x) y\|: x \in X\} \\
& =\sup _{\|x\| \leq 1}\{\mid f(x)\| \| y \|: x \in X\} \\
& =\|f\|_{*}\|y\| .
\end{aligned}
$$

Let $E=\{\alpha y: \alpha \in \mathbb{F}\}$ be the subspace of Y generated by y .
So $\operatorname{dim} E \leq 1$.
Clearly $(f \oplus y)[X]=\{f(x) y: x \in X\} \subset E$
$\Rightarrow \operatorname{dim}(f \oplus y)[X] \leq \operatorname{dim} E \leq 1$.

Rank-One Operators

If $f \neq 0$, then f is surjective. Hence $(f \oplus y)[X]=E$; but $y \neq 0 \Rightarrow \operatorname{dim} E=1$ so that $\operatorname{dim}(f \oplus y)[X]=\operatorname{dim} E=1$.

Rank-One Operators

If $f \neq 0$, then f is surjective. Hence $(f \oplus y)[X]=E$; but $y \neq 0 \Rightarrow \operatorname{dim} E=1$ so that $\operatorname{dim}(f \oplus y)[X]=\operatorname{dim} E=1$.
(2) Let $T_{n}=\sum_{k=1}^{n} f_{k} \oplus y_{k} \forall n \in \mathbb{N}$. By (1), $T_{n} \in B(X, Y) \forall n \in \mathbb{N}$.

Let $c_{n}=\sum_{k=1}^{n}\left\|f_{k}\right\|_{*}\left\|y_{k}\right\| \forall n \in \mathbb{N}$.

Rank-One Operators

If $f \neq 0$, then f is surjective. Hence $(f \oplus y)[X]=E$; but $y \neq 0 \Rightarrow \operatorname{dim} E=1$ so that $\operatorname{dim}(f \oplus y)[X]=\operatorname{dim} E=1$.
(2) Let $T_{n}=\sum_{k=1}^{n} f_{k} \oplus y_{k} \forall n \in \mathbb{N}$. By (1), $T_{n} \in B(X, Y) \forall n \in \mathbb{N}$.

Let $c_{n}=\sum_{k=1}^{n}\left\|f_{k}\right\|_{*}\left\|y_{k}\right\| \forall n \in \mathbb{N}$.By the hypothesis, $\left(c_{n}\right)_{n \geq 1}$ is a Cauchy sequence.

Rank-One Operators

If $f \neq 0$, then f is surjective. Hence $(f \oplus y)[X]=E$; but $y \neq 0 \Rightarrow \operatorname{dim} E=1$ so that $\operatorname{dim}(f \oplus y)[X]=\operatorname{dim} E=1$.
(2) Let $T_{n}=\sum_{k=1}^{n} f_{k} \oplus y_{k} \forall n \in \mathbb{N}$. By (1), $T_{n} \in B(X, Y) \forall n \in \mathbb{N}$.

Let $c_{n}=\sum_{k=1}^{n}\left\|f_{k}\right\|_{*}\left\|y_{k}\right\| \forall n \in \mathbb{N}$.By the hypothesis, $\left(c_{n}\right)_{n \geq 1}$ is a Cauchy
sequence. To see that $\left(T_{n}\right)_{n \geq 1}$ is a Cauchy sequence for $\left\|\|_{*}\right.$, let $\varepsilon>0$. Then

$$
\exists K \in \mathbb{N} \text { st } n, m \geq K \Rightarrow\left|c_{n}-c_{m}\right|<\varepsilon
$$

For $n \geq m \geq K$ we have

Rank-One Operators

$$
\begin{aligned}
\left\|T_{n}-T_{m}\right\|_{*} & =\left\|\sum_{t=1}^{n} f_{t} \oplus y_{t}-\sum_{t=1}^{m} f_{t} \oplus y_{t}\right\|_{*} \\
& =\left\|\sum_{t=m+1}^{n} f_{t} \oplus y_{t}\right\|_{*} \\
& \leq \sum_{t=m+1}^{n}\left\|f_{t} \oplus y_{t}\right\|_{*} \\
& =\sum_{t=m+1}^{n}\left\|f_{t}\right\|_{*}\left\|y_{t}\right\| \\
& =c_{n}-c_{m}=\left|c_{n}-c_{m}\right|<\varepsilon
\end{aligned}
$$

Rank-One Operators

Since Y is Banach, it follows that the series $\sum_{n=1}^{\infty} f_{n} \oplus y_{n}$ converges for $\left\|\|_{*}\right.$ to a bounded linear operator on X. This completes the proof.

Operators on Banach Spaces

Let X and Y be normed spaces and $T: X \rightarrow Y$ is a bounded linear operator.

Operators on Banach Spaces

Let X and Y be normed spaces and $T: X \rightarrow Y$ is a bounded linear operator.
T is compact iff for any bounded subset A of X, the closure $\overline{f[A]}$ is compact. $\operatorname{co}(X, Y)=\left\{f \in Y^{X}: f\right.$ is linear and compact $\}$.

Operators on Banach Spaces

Let X and Y be normed spaces and $T: X \rightarrow Y$ is a bounded linear operator.
T is compact iff for any bounded subset A of X, the closure $\overline{f[A]}$ is compact. $\mathrm{co}(X, Y)=\left\{f \in Y^{X}: \mathrm{f}\right.$ is linear and compact $\}$.
T is finite-rank iff Range of T is finite dimensional.
$F_{i}(X, Y)=\{f \in B(X, Y): f$ is finite-rank $\}$.

Operators on Banach Spaces

Let X and Y be normed spaces and $T: X \rightarrow Y$ is a bounded linear operator.
T is compact iff for any bounded subset A of X, the closure $\overline{f[A]}$ is compact. $\operatorname{co}(X, Y)=\left\{f \in Y^{X}: f\right.$ is linear and compact $\}$.
T is finite-rank iff Range of T is finite dimensional. $F_{i}(X, Y)=\{f \in B(X, Y): f$ is finite-rank $\}$.
T is nuclear iff $T \in B(X, Y)$ and \exists sequence $\left(f_{n}\right)_{n \geq 1}$ in X^{*}, \exists sequence $\left(y_{n}\right)_{n \geq 1}$ in Y such that $\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{*}\left\|y_{n}\right\|<\infty$ and the series $\sum_{n=1}^{\infty} f_{n} \oplus y_{n}$ converges for $\left\|\|_{*}\right.$ to T.

Relationship between $\mathrm{Fi}(X, Y)$ and $\mathrm{Nu}(X, Y)$

Theorem

Let X and Y be normed spaces on $\mathbb{F}=\mathbb{R}$ or \mathbb{C}.
(1) $\operatorname{Fi}(X, Y)=\left\{\sum_{k=1}^{n} f_{k} \oplus y_{k}: n \in \mathbb{N}, f_{k} \in X^{*}\right.$ and $\left.y_{k} \in Y, k=1, \ldots n\right\}$
$=$ subspace generated by $\left\{f \oplus y: f \in X^{*}\right.$ and $\left.y \in Y\right\}$.
(2) $\operatorname{Fi}(X, Y) \subset \operatorname{Nu}(X, Y)$.

Proof. Let $M=\left\{\sum_{k=1}^{n} f_{k} \oplus y_{k}: n \in \mathbb{N}, f_{k} \in X^{*}\right.$ and $\left.y_{k} \in Y, k=1, \ldots n\right\}$ and let $\operatorname{lin}(E)$ be the subspace generated by $E \equiv\left\{f \oplus y: f \in X^{*}\right.$ and $\left.y \in Y\right\}$.

1a) Clearly $M \subset \operatorname{lin}(E)$.

Proof. Let $M=\left\{\sum_{k=1}^{n} f_{k} \oplus y_{k}: n \in \mathbb{N}, f_{k} \in X^{*}\right.$ and $\left.y_{k} \in Y, k=1, \ldots n\right\}$
and let $\operatorname{lin}(E)$ be the subspace generated by
$E \equiv\left\{f \oplus y: f \in X^{*}\right.$ and $\left.y \in Y\right\}$.
1a) Clearly $M \subset \operatorname{lin}(E)$.
1b) If $\alpha \in \mathbb{F}, f \in X^{*}$ and $y \in Y$, one has

$$
\alpha(f \oplus y)=(\alpha f) \oplus y=f \oplus(\alpha y) \in E .
$$

Proof. Let $M=\left\{\sum_{k=1}^{n} f_{k} \oplus y_{k}: n \in \mathbb{N}, f_{k} \in X^{*}\right.$ and $\left.y_{k} \in Y, k=1, \ldots n\right\}$ and let $\operatorname{lin}(E)$ be the subspace generated by $E \equiv\left\{f \oplus y: f \in X^{*}\right.$ and $\left.y \in Y\right\}$.

1a) Clearly $M \subset \operatorname{lin}(E)$.
1b) If $\alpha \in \mathbb{F}, f \in X^{*}$ and $y \in Y$, one has

$$
\alpha(f \oplus y)=(\alpha f) \oplus y=f \oplus(\alpha y) \in E .
$$

1c) Let $h \in \operatorname{lin}(E)$. $\exists n \in \mathbb{N} \exists \alpha_{k} \in \mathbb{F} \exists f_{k} \in X^{*} \exists y_{k} \in Y$ for $k=1, \ldots, n$ such that

$$
h=\sum_{k=1}^{n} \alpha_{k}\left(f_{k} \oplus y_{k}\right) .
$$

$\forall k \in\{1, \ldots, n\}, g_{k} \equiv \alpha_{k} f_{k} \in X^{*}$ and by 1 b$) \alpha_{k}\left(f_{k} \oplus y_{k}\right)=g_{k} \oplus y_{k}$.

It follows that

$$
h=\sum_{k=1}^{n} \alpha_{k}\left(f_{k} \oplus y_{k}\right)=\sum_{k=1}^{n} g_{k} \oplus y_{k} \in M
$$

Hence $\operatorname{lin}(E) \subset M$ and $M=\operatorname{lin}(E)$.

It follows that

$$
h=\sum_{k=1}^{n} \alpha_{k}\left(f_{k} \oplus y_{k}\right)=\sum_{k=1}^{n} g_{k} \oplus y_{k} \in M .
$$

Hence $\operatorname{lin}(E) \subset M$ and $M=\operatorname{lin}(E)$.
1d) Let $g \in M$. Then $g=\sum_{k=1}^{n} f_{k} \oplus y_{k}$ with $n \in \mathbb{N}, f_{k} \in X^{*}$ and $y_{k} \in Y$ for $k=1, \ldots, n$.
$\forall k \in\{1, \ldots, n\}$ we know by Lemma that $f_{k} \oplus y_{k} \in \operatorname{Fi}(X, Y)$ with $\operatorname{dim}\left(f_{k} \oplus y_{k}\right)[X] \leq 1$.

It follows that

$$
h=\sum_{k=1}^{n} \alpha_{k}\left(f_{k} \oplus y_{k}\right)=\sum_{k=1}^{n} g_{k} \oplus y_{k} \in M .
$$

Hence $\operatorname{lin}(E) \subset M$ and $M=\operatorname{lin}(E)$.
1d) Let $g \in M$. Then $g=\sum_{k=1}^{n} f_{k} \oplus y_{k}$ with $n \in \mathbb{N}, f_{k} \in X^{*}$ and $y_{k} \in Y$ for $k=1, \ldots, n$.
$\forall k \in\{1, \ldots, n\}$ we know by Lemma that $f_{k} \oplus y_{k} \in \operatorname{Fi}(X, Y)$ with $\operatorname{dim}\left(f_{k} \oplus y_{k}\right)[X] \leq 1$.
Therefore

$$
\operatorname{dim} g[X] \leq \sum_{k=1}^{n} \operatorname{dim}\left(f_{k} \oplus y_{k}\right)[X] \leq n<\infty
$$

Clearly $g \in B(X, Y)$.Thus $g \in F i(X, Y)$ and $M \subset F i(X, Y)$.

1e) Let $T \in \operatorname{Fi}(X, Y)$. Then $T \in B(X, Y)$ and $\operatorname{dim} T[X]$ is finite. If $\operatorname{dim} T[X]=0$, then $T=0$. Taking $y=0 \in Y$ and $f \in X^{*}$ arbitrary, one gets $T=f \oplus y \in M$.

1e) Let $T \in \operatorname{Fi}(X, Y)$. Then $T \in B(X, Y)$ and $\operatorname{dim} T[X]$ is finite. If $\operatorname{dim} T[X]=0$, then $T=0$. Taking $y=0 \in Y$ and $f \in X^{*}$ arbitrary, one gets $T=f \oplus y \in M$.

Suppose $\operatorname{dim} T[X]=n \in \mathbb{N}$ and let $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a basis of $T[X]$. Define $V: \mathbb{F}^{n} \rightarrow T[X]$ by the formula

$$
V\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\sum_{k=1}^{n} \alpha_{k} y_{k}
$$

1e) Let $T \in \operatorname{Fi}(X, Y)$. Then $T \in B(X, Y)$ and $\operatorname{dim} T[X]$ is finite. If $\operatorname{dim} T[X]=0$, then $T=0$. Taking $y=0 \in Y$ and $f \in X^{*}$ arbitrary, one gets $T=f \oplus y \in M$.

Suppose $\operatorname{dim} T[X]=n \in \mathbb{N}$ and let $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a basis of $T[X]$. Define $V: \mathbb{F}^{n} \rightarrow T[X]$ by the formula

$$
V\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\sum_{k=1}^{n} \alpha_{k} y_{k} .
$$

Then $V \in B\left(\mathbb{F}^{n}, T[X]\right), V$ is bijective, and if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}$, one has $V^{-1}\left(\sum_{k=1}^{n} \alpha_{k} y_{k}\right)=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

1e) Let $T \in \operatorname{Fi}(X, Y)$. Then $T \in B(X, Y)$ and $\operatorname{dim} T[X]$ is finite. If $\operatorname{dim} T[X]=0$, then $T=0$. Taking $y=0 \in Y$ and $f \in X^{*}$ arbitrary, one gets $T=f \oplus y \in M$.

Suppose $\operatorname{dim} T[X]=n \in \mathbb{N}$ and let $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a basis of $T[X]$. Define $V: \mathbb{F}^{n} \rightarrow T[X]$ by the formula

$$
V\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\sum_{k=1}^{n} \alpha_{k} y_{k}
$$

Then $V \in B\left(\mathbb{F}^{n}, T[X]\right), V$ is bijective, and if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}$, one has $V^{-1}\left(\sum_{k=1}^{n} \alpha_{k} y_{k}\right)=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

If $j \in\{1, \ldots, n\}$, let $S_{j}: T[X] \rightarrow \mathbb{F}, S_{j}=p r_{j} \circ V^{-1}$, where $p r_{j}$ is the j th projection of \mathbb{F}^{n} on \mathbb{F}.

Then $S_{j} \in(T[X])^{*}$, and by Hahn-Banach Theorem, $\exists T_{j} \in Y^{*}$ such that

$$
\left.T_{j}\right|_{T[X]}=S_{j} \text { and }\left\|T_{j}\right\|_{*}=\left\|S_{j}\right\|_{*}, \forall j=1, \ldots, n .
$$

Then $S_{j} \in(T[X])^{*}$, and by Hahn-Banach Theorem, $\exists T_{j} \in Y^{*}$ such that

$$
\left.T_{j}\right|_{T[X]}=S_{j} \text { and }\left\|T_{j}\right\|_{*}=\left\|S_{j}\right\|_{*}, \forall j=1, \ldots, n
$$

$\forall j \in\{1, \ldots, n\}, f_{j} \equiv T_{j} \circ T \in X^{*}$, and so $\sum_{k=1}^{n} f_{k} \oplus y_{k} \in M$. We show that $T=\sum_{k=1}^{n} f_{k} \oplus y_{k}$.

Then $S_{j} \in(T[X])^{*}$, and by Hahn-Banach Theorem, $\exists T_{j} \in Y^{*}$ such that

$$
\left.T_{j}\right|_{T[X]}=S_{j} \text { and }\left\|T_{j}\right\|_{*}=\left\|S_{j}\right\|_{*}, \forall j=1, \ldots, n
$$

$\forall j \in\{1, \ldots, n\}, f_{j} \equiv T_{j} \circ T \in X^{*}$, and so $\sum_{k=1}^{n} f_{k} \oplus y_{k} \in M$. We show that $T=\sum_{k=1}^{n} f_{k} \oplus y_{k}$.

If $x \in X$ then $T(x) \in T[X]$ and since $\left\{y_{1}, \ldots, y_{n}\right\}$ is a base of $T[X]$, $\exists \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ such that $T(x)=\sum_{k=1}^{n} \alpha_{k} y_{k}$.
We then have

$$
\begin{aligned}
& \left(\sum_{k=1}^{n} f_{k} \oplus y_{k}\right)(x)=\sum_{k=1}^{n} f_{k}(x) y_{k}=\sum_{k=1}^{n}\left(T_{k} \circ T\right)(x) y_{k} \\
= & \sum_{k=1}^{n} T_{k}(T(x)) y_{k}=\sum_{k=1}^{n} S_{k}(T(x)) y_{k}=\sum_{k=1}^{n}\left(p r_{k} \circ V^{-1}\right)(T(x)) y_{k}
\end{aligned}
$$

$$
\begin{aligned}
=\sum_{k=1}^{n} p r_{k}\left(V^{-1}\left(\sum_{i=1}^{n} \alpha_{1} y_{i}\right) y_{k}\right) & =\sum_{k=1}^{n} p r_{k}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) y_{k} \\
=\sum_{k=1}^{n} \alpha_{k} y_{k} & =T(x)
\end{aligned}
$$

Thus $\operatorname{Fi}(X, Y) \subset M$ and $\operatorname{Fi}(X, Y)=M$.
(2) Let $f \in F i(X, Y)$. By (1) $\exists n \in \mathbb{N} \exists f_{k} \in X^{*} \exists y_{k} \in Y, k=1, \ldots, n$ such that $f=\sum_{k=1}^{n} f_{k} \oplus y_{k}$. If $k \in \mathbb{N}$ with $k>n$, define f_{k} the null form on X and $y_{k}=0 \in Y$.
Hence $f_{k} \in X^{*}$ and $y_{k} \in Y$ with $f_{k} \oplus y_{k}=0$.
We then have: $f_{k} \in X^{*}$ and $y_{k} \in Y \forall k \in \mathbb{N}$,
$\sum_{k=1}^{\infty}\left\|f_{k}\right\|_{*}\left\|y_{k}\right\|=\sum_{k=1}^{n}\left\|f_{k}\right\|_{*}\left\|y_{k}\right\|<\infty$ and

$$
\sum_{k=1}^{\infty} f_{k} \oplus y_{k}=\sum_{k=1}^{n} f_{k} \oplus y_{k}=f \in B(X, Y)
$$

This means by definition that $f \in N u(X, Y)$. Hence $F i(X, Y) \subset N u(X, Y)$.

Theorem

(1) If X is a normed space and Y is Banach then $N u(X, Y) \subset \operatorname{co}(X, Y)$ and so $\operatorname{Fi}(X, Y) \subset N u(X, Y) \subset c o(X, Y) \subset B(X, Y)$.
(2) If X and Y are Banach such that either X or Y is finite dimensional then $\operatorname{Fi}(X, Y)=N u(X, Y)=c o(X, Y)=B(X, Y)$.

Theorem

(1) If X is a normed space and Y is Banach then $N u(X, Y) \subset \operatorname{co}(X, Y)$ and so $\operatorname{Fi}(X, Y) \subset N u(X, Y) \subset \operatorname{co}(X, Y) \subset B(X, Y)$.
(2) If X and Y are Banach such that either X or Y is finite dimensional then $\operatorname{Fi}(X, Y)=N u(X, Y)=c o(X, Y)=B(X, Y)$.

Proof. 1a) We have $F i(X, Y) \subset N u(X, Y)$ and $c o(X, Y) \subset B(X, Y)$ without the requirement Y is Banach.

1b) Let $T \in \operatorname{Nu}(X, Y)$. $\exists\left(f_{n}\right)$ in $X^{*} \exists\left(y_{n}\right)$ in Y such that $\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{*}\left\|y_{n}\right\|<\infty$ and $\left(\sum_{k=1}^{n} f_{k} \oplus y_{k}\right)_{n \geq 1}$ converges in operator norm $\left\|\|_{*}\right.$ to $T \in B(X, Y)$.
$\forall n \in \mathbb{N}, T_{n}=\sum_{k=1}^{n} f_{k} \oplus y_{k} \in \operatorname{Fi}(X, Y)$.
Since $\left(T_{n}\right)_{n \geq 1}$ converges to T and Y is Banach, we know $T \in \operatorname{co}(X, Y)$. Thus $N u(X, Y) \subset B(X, Y)$ when Y is Banach.
(2) If $\operatorname{dim} X<\infty$ then $f \in B(X, Y) \Rightarrow \operatorname{dim} f[X] \leq \operatorname{dim} X<\infty$ $\Rightarrow f \in F i(X, Y)$.
If $\operatorname{dim} Y<\infty$ then $f \in B(X, Y) \Rightarrow \operatorname{dim} f[X] \leq \operatorname{dim} Y<\infty \Rightarrow$ $f \in \operatorname{Fi}(X, Y)$.
Thus $\operatorname{dim} X<\infty$ or $\operatorname{dim} Y<\infty \Rightarrow B(X, Y) \subset \operatorname{Fi}(X . Y)$.
Thus by (1), $F i(X, Y)=N u(X, Y)=c o(X, Y)=B(X, Y)$.

Thank you

