The Singular Value Decomposition for Analysts

Jim Rulla

January 13, 2023

For $\mathrm{x} \in R^{n}$ and $\mathrm{y} \in R^{m}$,

$$
\|\mathrm{x}\|=\sqrt{\sum_{j=1}^{n} x_{j}^{2}} \quad\|\mathrm{y}\|=\sqrt{\sum_{i=1}^{m} y_{i}^{2}}
$$

$\mathrm{A}: R^{n} \rightarrow R^{m}$ is linear

$$
\|\mathrm{A}\|=\sup _{\|\times\| \leq 1}\|\mathrm{Ax}\|=\sup _{\|\times\|=1}\|\mathrm{Ax}\|
$$

$$
\begin{aligned}
\left\|\mathrm{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right\|^{2} & =\left(x_{2}-x_{1}\right)^{2}+x_{2}^{2}+x_{1}^{2} \\
& =2\left(x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}\right) .
\end{aligned}
$$

Parameterize the unit vector

$$
\mathbf{x}(\theta)=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right],
$$

so

$$
\|\operatorname{Ax}(\theta)\|^{2}=2-\sin (2 \theta) .
$$

Example: Consider

$$
\mathrm{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2}-x_{1} \\
x_{2} \\
x_{1}
\end{array}\right]=\left[\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

The most A can stretch a unit vector is

$$
\|A\|=\sup _{\theta \in[0,2 \pi)} \sqrt{2-\sin (2 \theta)}=\sqrt{3} .
$$

$\theta=\frac{3 \pi}{4}$ maximizes $\|A x(\theta)\|=\sqrt{2-\sin (2 \theta)}$, so a unit vector which A stretches the most is

$$
\mathrm{v}_{1}=\left[\begin{array}{l}
\cos \left(\frac{3 \pi}{4}\right) \\
\sin \left(\frac{3 \pi}{4}\right)
\end{array}\right]=\left[\begin{array}{r}
-\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right]
$$

and its corresponding image $A v_{1}$ is

$$
\left[\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right] v_{1}=\left[\begin{array}{r}
\sqrt{2} \\
\frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2}
\end{array}\right]=\underbrace{\sqrt{3}}_{\sigma_{1}} \underbrace{\left[\begin{array}{c}
2 \frac{\sqrt{6}}{6} \\
\frac{\sqrt{6}}{6} \\
-\frac{\sqrt{6}}{6}
\end{array}\right]}_{\mathbf{u}_{1}}
$$

v_{1} is a right singular vector,
u_{1} is the corresponding left singular vector, $\sigma_{1}=\|\mathrm{A}\|=\sqrt{3}$ is A 's largest singular value.

Wait, there's more!
$\theta=\frac{\pi}{4}$ minimizes $\|A x(\theta)\|=\sqrt{2-\sin (2 \theta)}$, so a unit vector which A stretches the least is

$$
\mathrm{v}_{2}=\left[\begin{array}{c}
\cos \left(\frac{\pi}{4}\right) \\
\sin \left(\frac{\pi}{4}\right)
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right]
$$

and the corresponding image $A v_{2}$ is

$$
\left[\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right] \mathrm{v}_{2}=\left[\begin{array}{c}
0 \\
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right]=\underbrace{1}_{\sigma_{2}} \underbrace{\left[\begin{array}{c}
0 \\
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right]}_{\mathbf{u}_{2}}
$$

Observe that $\mathrm{v}_{1} \perp \mathrm{v}_{2}$ (from $\sin (2 \theta)$, e.g.) and $\mathrm{u}_{1} \perp \mathrm{u}_{2}$ (from dumb luck, or not?).
$\mathrm{v}_{1} \& \mathrm{v}_{2}$ are an orthonormal basis of R^{2}, so $\forall \mathrm{x}$,

$$
\begin{aligned}
\mathrm{x} & =\mathrm{v}_{1} \mathrm{v}_{1}^{T} \mathrm{x}+\mathrm{v}_{2} \mathrm{v}_{2}^{T} \mathrm{x} \\
\mathrm{Ax} & =\sigma_{1} \mathrm{u}_{1} \mathrm{v}_{1}^{T} \mathrm{x}+\sigma_{2} \mathbf{u}_{2} \mathrm{v}_{2}^{T} \mathrm{x}
\end{aligned}
$$

$$
\text { So } \mathbf{A}=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \mathbf{u}_{2} \mathrm{v}_{2}^{T}
$$

$$
\begin{aligned}
= & {\left[\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
- & \mathrm{v}_{1}^{T} & - \\
- & \mathrm{v}_{2}^{T} & -
\end{array}\right] } \\
& +\left[\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & \sigma_{2}
\end{array}\right]\left[\begin{array}{lll}
- & \mathrm{v}_{1}^{T} & - \\
- & \mathrm{v}_{2}^{T} & -
\end{array}\right] \\
= & \underbrace{\left[\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} \\
\mid & \mid
\end{array}\right]}_{\mathrm{u}} \underbrace{\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{lll}
- & \mathrm{v}_{1}^{T} & - \\
- & \mathrm{v}_{2}^{T} & -
\end{array}\right]}_{\mathbf{v}^{T}}
\end{aligned}
$$

is a Singular Value Decomposition of A.

In our example,

$$
\left[\begin{array}{cc}
-1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
2 \frac{\sqrt{6}}{6} & 0 \\
\frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\
-\frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]
$$

U has orthonormal columns, so $\mathrm{U}^{T} \mathrm{U}=\mathrm{I}_{2 \times 2}$ and $\mathrm{UU}^{T}=$ orthogonal projection onto $\left\langle\mathrm{u}_{1}, \mathrm{u}_{2}\right\rangle$.

V has orthonormal columns, so $\mathrm{V}^{T} \mathrm{~V}=\mathrm{I}_{2 \times 2}$ and $\mathrm{V} \mathrm{V}^{T}=$ orthogonal projection onto $\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle$.
Σ is diagonal, with non-negative entries.
yx^{T} is an outer product, a rank-1 matrix or a dyad.

The SVD represents A as a linear combination of two rank-1 matrices, both of whose " y "s and both of whose "x"s are orthonormal.

Lemma: \mathcal{V}, \mathcal{U} Hilbert spaces, $\mathrm{A}: \mathcal{V} \rightarrow \mathcal{U}$ linear. If the unit vector v_{0} satisfies

$$
\|\mathrm{A}\|=\left\|\mathrm{Av}_{0}\right\|
$$

then

$$
A \mathrm{v}_{1} \perp \mathrm{~A} \mathrm{v}_{0} \quad \text { whenever } \quad \mathrm{v}_{1} \perp \mathrm{v}_{0} .
$$

In other words, $\mathrm{A}\left\langle\mathrm{v}_{0}\right\rangle^{\perp} \leq\left\langle\mathrm{Av}_{0}\right\rangle^{\perp}$.
Lemma's lemma ("Complete the cosine"):

$$
a \cos (\alpha)+b \sin (\alpha)=r \cos (\alpha-\varphi)
$$

where

$$
r=\sqrt{a^{2}+b^{2}}, \quad \cos (\varphi)=\frac{a}{r}, \quad \& \quad \sin (\varphi)=\frac{b}{r} .
$$

Proof of the lemma: v_{1} may as well be a unit vector. Since $v_{1} \perp v_{0}$,

$$
\mathrm{v}(\theta)=\cos (\theta) \mathrm{v}_{0}+\sin (\theta) \mathrm{v}_{1}
$$

is a unit vector for every θ.

$$
\begin{aligned}
\|A v(\theta)\|^{2}= & \cos ^{2}(\theta)\left\|A v_{0}\right\|^{2} \\
& +2 \sin (\theta) \cos (\theta)\left(A v_{0}, A v_{1}\right) \\
& \quad+\sin ^{2}(\theta)\left\|A v_{1}\right\|^{2} \\
= & \frac{\left\|A v_{0}\right\|^{2}+\left\|A v_{1}\right\|^{2}}{2}+\frac{\left\|A v_{0}\right\|^{2}-\left\|A v_{1}\right\|^{2}}{2} \cos (2 \theta) \\
& +\left(A v_{0}, A v_{1}\right) \sin (2 \theta) \\
= & \frac{\left\|A v_{0}\right\|^{2}+\left\|A v_{1}\right\|^{2}}{2}+r \cos (2 \theta-\varphi)
\end{aligned}
$$

where, by the lemma's lemma,

$$
r=\sqrt{\left(\frac{\left\|\mathrm{Av}_{0}\right\|^{2}-\left\|\mathrm{Av}_{1}\right\|^{2}}{2}\right)^{2}+\left(\mathrm{Av}_{0}, \mathrm{Av}_{1}\right)^{2}}
$$

So

$$
\begin{aligned}
\left\|A v_{0}\right\|^{2}= & \frac{\left\|A v_{0}\right\|^{2}+\left\|A v_{1}\right\|^{2}}{2} \\
& +\sqrt{\left(\frac{\left\|A v_{0}\right\|^{2}-\left\|A v_{1}\right\|^{2}}{2}\right)^{2}+\left(A v_{0}, A v_{1}\right)^{2}} \\
> & \left\|A v_{0}\right\|^{2} \quad \text { if } \quad\left(A v_{0}, A v_{1}\right) \neq 0
\end{aligned}
$$

The proof holds for any Hilbert spaces, not just finite-dimensional spaces.

The lemma is a differential condition for extrema of a function (the norm) subject to a constraint (to unit vectors): at a maximizer v_{0}, movement in any allowed direction (perpendicuar to v_{0}) must not increase the length of the image u_{0}; hence must move orthogonal to the image.

If $\|v(\theta)\|^{2}=1$, then

$$
0=\frac{d}{d \theta}\|\mathrm{v}(\theta)\|^{2}=2 \mathrm{v}(\theta)^{T} \mathrm{v}^{\prime}(\theta)
$$

so the derivative is orthogonal to the vector.
Likewise, at an extremum,

$$
0=\frac{d}{d \theta}\|\operatorname{Av}(\theta)\|^{2}=2 \mathrm{v}(\theta)^{T} \mathrm{~A}^{T} \mathrm{Av}^{\prime}(\theta)
$$

so $A v_{0}$ is orthogonal to the image of $v^{\prime}(\theta)$.

We construct the SVD of A recursively.
Step 1: Find a unit vector v_{1} for which

$$
\|\mathrm{A}\|=\left\|\mathrm{A} \mathrm{v}_{1}\right\|=\sigma_{1}
$$

and a normalized image u_{1} for which

$$
\mathrm{A} \mathrm{v}_{1}=\sigma_{1} \mathrm{u}_{1}
$$

By the lemma, A maps

$$
\begin{array}{rlc}
\mathcal{S}_{1} & =\left\langle\mathrm{v}_{1}\right\rangle & \longrightarrow
\end{array}\left\langle\mathrm{u}_{1}\right\rangle
$$

Step 2: $\mathcal{S}_{1}{ }^{\perp}=\left\langle\mathrm{v}_{1}\right\rangle^{\perp}$ is a Hilbert space. Find a unit vector $\mathrm{v}_{2} \in \mathcal{S}_{1}{ }^{\perp}$ for which

$$
\sup _{\substack{\mathrm{v} \in \mathcal{S}_{1} \perp \\\|\mathbb{V}\|=1}}\|\mathrm{Av}\|=\left\|\mathrm{A} \mathrm{v}_{2}\right\|=\sigma_{2},
$$

and a normalized image u_{2} for which

$$
\mathrm{A} \mathrm{v}_{2}=\sigma_{2} \mathbf{u}_{2}
$$

Since $\left\langle\mathrm{v}_{2}\right\rangle^{\perp}$ in $\mathcal{S}_{1}{ }^{\perp}$ is $\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle^{\perp}$, the lemma says A maps

$$
\begin{array}{ccc}
\mathcal{S}_{2}=\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle & \longrightarrow & \left\langle\mathrm{u}_{1}, \mathrm{u}_{2}\right\rangle \\
\mathcal{S}_{2} \perp & =\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle^{\perp} & \longrightarrow
\end{array}\left\langle\mathrm{u}_{1}, \mathrm{u}_{2}\right\rangle^{\perp}
$$

Furthermore, A stretches every vector in $\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle$ by at least σ_{2} :

$$
\begin{aligned}
\left\|\mathbf{A}\left(\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathrm{v}_{2}\right)\right\|^{2} & =\left\|\alpha_{1} \sigma_{1} \mathbf{u}_{1}+\alpha_{2} \sigma_{2} \mathbf{u}_{2}\right\|^{2} \\
& =\sigma_{1}^{2}\left\|\alpha_{1} \mathbf{u}_{1}\right\|^{2}+\sigma_{2}^{2}\left\|\alpha_{2} \mathbf{u}_{2}\right\|^{2} \\
& \geq \sigma_{2}^{2}\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) \\
& =\sigma_{2}^{2}\left\|\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}\right\|^{2}
\end{aligned}
$$

because $\mathrm{u}_{1} \perp \mathrm{u}_{2}, \sigma_{1} \geq \sigma_{2}$, and $\mathrm{v}_{1} \perp \mathrm{v}_{2}$.

Step k : Set $\mathcal{S}_{k-1}=\left\langle\mathrm{v}_{1}, \cdots, \mathrm{v}_{k-1}\right\rangle$. Then $\mathcal{S}_{k-1}{ }^{\perp}$ is a Hilbert space. Find a unit vector $\mathrm{v}_{k} \in$ $\mathcal{S}_{k-1}{ }^{\perp}$ for which

$$
\sup _{\substack{\mathbf{v} \in \mathcal{S}_{k-1} \perp \\\|\mathbf{v}\|=1}}\|\mathrm{Av}\|=\left\|\mathrm{Av}_{k}\right\|=\sigma_{k},
$$

and a normalized image u_{k} for which

$$
\mathrm{Av}_{k}=\sigma_{k} \mathbf{u}_{k}
$$

By the lemma, A maps

$$
\begin{aligned}
\mathcal{S}_{k} & =\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right\rangle \quad
\end{aligned} \quad \longrightarrow \quad\left\langle\mathrm{u}_{1}, \ldots, \mathrm{u}_{k}\right\rangle
$$

Furthermore, $\sigma_{k} \leq \sigma_{k-1}$,

$$
\begin{array}{ll}
\|\mathrm{Av}\| \geq \sigma_{k}\|\mathrm{v}\| & \forall \mathrm{v} \in\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right\rangle, \text { and } \\
\|\mathrm{Av}\| \leq \sigma_{k}\|\mathrm{v}\| & \forall \mathrm{v} \in\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right\rangle^{\perp}
\end{array}
$$

Iterate until $\sigma_{r+1}=0$. Then

$$
\begin{aligned}
& \|\mathrm{Av}\| \geq \sigma_{r}\|\mathrm{v}\| \quad \forall \mathrm{v} \in \mathcal{S}_{r}=\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right\rangle \\
& \|\mathrm{Av}\|=0 \quad \forall \mathrm{v} \in \mathcal{S}_{r}{ }^{\perp}=\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right\rangle^{\perp}
\end{aligned}
$$

So

$$
\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right\rangle^{\perp}=\mathcal{N}(\mathrm{A})
$$

For any x ,

$$
\mathrm{x}=\mathrm{v}_{1} \mathrm{v}_{1}^{T} \mathrm{x}+\cdots+\mathrm{v}_{r} \mathrm{v}_{r}^{T} \mathrm{x}+\mathrm{n}
$$

where $\mathrm{n} \in \mathcal{N}(\mathrm{A})$. Then

$$
\mathrm{Ax}=\mathrm{u}_{1} \sigma_{1} \mathrm{v}_{1}^{T} \mathrm{x}+\cdots+\mathrm{u}_{r} \sigma_{r} \mathrm{v}_{r}^{T} \mathrm{x},=\mathrm{U} \Sigma \mathrm{~V}^{T} \mathrm{x}
$$

so an SVD exists,
$\left\langle\mathrm{u}_{1}, \ldots, \mathrm{u}_{r}\right\rangle$ is A's range or column space, and r is the rank of A.

SVDs represent operators as sums of rank-1 operators:

$$
\mathrm{A}=\sum_{i=1}^{r} \mathrm{u}_{i} \sigma_{i} \mathrm{v}_{i}^{T}
$$

The "bases" $\left\{\mathrm{v}_{i}\right\}$ and $\left\{\mathrm{u}_{i}\right\}$ are orthonormal, so term i is a (scalar) projection onto v_{i}, "stretched" by σ_{i}, "pointing" in the direction of u_{i}.

Since the σ_{i} are non-increasing,

$$
\begin{aligned}
& \|\mathrm{Av}\| \geq \sigma_{k}\|\mathrm{v}\| \forall \mathrm{v} \in\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right\rangle \\
& \|\mathrm{Av}\| \leq \sigma_{k}\|\mathrm{v}\| \forall \mathrm{v} \in\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right\rangle^{\perp}
\end{aligned}
$$

The most "rank-1" information about A is contained in $\mathrm{u}_{1} \sigma_{1} \mathrm{v}_{1}^{T}$. The most "rank-2" information is contained in $\mathbf{u}_{1} \sigma_{1} \mathbf{v}_{1}^{T}+\mathbf{u}_{2} \sigma_{2} \mathrm{v}_{2}^{T}$, etc.
Schmidt sought low-rank approximations of operators.

The SVD has a "tidy representation" as

$$
\mathrm{A}=\mathbf{U} \Sigma \mathbf{V}^{T}=\left[\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} & \cdots \\
\mid & \mathbf{u}_{r} \\
\mid & \\
\hline
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & \\
& 0 \\
& \ddots \\
0 & \\
\sigma_{r}
\end{array}\right]\left[\begin{array}{c}
-\mathrm{v}_{1}{ }^{T}- \\
\vdots \\
-\mathrm{v}_{r}{ }^{T}-
\end{array}\right]
$$

where $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}$.
Since the v_{i} are orthonormal, VV^{T} is the orthogonal projection onto the span of the v_{i}, and similarly for UU^{T}. Also, $\mathrm{V}^{T} \mathrm{~V}=\mathrm{I}_{r \times r}=\mathrm{U}^{T} \mathrm{U}$.
The SVD is especially useful in applications requiring the rank of A.
If you already know the spectral theorem, you can use Lagrange Multipliers to find v_{i} :

$$
\nabla\left\|\mathrm{Av}_{i}\right\|^{2}=\lambda_{i} \nabla\left\|\mathrm{v}_{i}\right\|^{2} \Rightarrow \mathrm{~A}^{T} \mathrm{Av}_{i}=\lambda_{i} \mathrm{v}_{i}
$$

Left multiply by v_{i}^{T} to verify $\lambda_{i}=\left\|\mathrm{Av}_{i}\right\|^{2}=\sigma_{i}^{2}$.

Since

$$
\mathrm{A}=\mathrm{U} \Sigma \mathrm{~V}^{T}
$$

an SVD for the transpose is

$$
\mathrm{A}^{T}=\mathrm{V} \Sigma \mathrm{U}^{T}
$$

$\left\langle\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\rangle^{\perp}$ is the left null space of A, and $\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right\rangle$ is the row space.

The rank of A^{T} is r, the rank of A .
These conclusions are collectively known as the Fundamental Theorem of Linear Algebra.
Furthermore, the singular values of A^{T} are the same as the singular values of A.

The maximum- and minimum-stretching properties of the singular values imply the " $\delta-\epsilon$ " estimates

$$
\left\|\mathrm{A} \mathrm{x}_{2}-\mathrm{A} \mathrm{x}_{1}\right\| \leq \sigma_{1}\left\|\mathrm{x}_{2}-\mathrm{x}_{1}\right\|
$$

for all x_{1} and x_{2}, and

$$
\sigma_{r}\left\|\mathrm{x}_{2}-\mathrm{x}_{1}\right\| \leq\left\|\mathrm{A} \mathrm{x}_{2}-\mathrm{A} \mathrm{x}_{1}\right\|
$$

for all x_{1} and x_{2} in the row space of A.
A is one-to-one on the row space, so it is one-toone if $r=n$.

If A is one-to-one, then it maps any region of (n-dim'l) volume V to a region of (n-dim'l) volume $\prod \sigma_{i} V$.

If A is onto, then it maps a δ-ball into a $\sigma_{r} \delta$ ball. This is a "hard" Open Mapping Theorem.

Suppose we know x to one part in a thousand.
How much relative accuracy can we ascribe to Ax? In other words, if

$$
\frac{\|\mathrm{h}\|}{\|\mathrm{x}\|}<\frac{1}{1000}
$$

what can we say about

$$
\frac{\|A(x+h)-A x\|}{\|A x\|} ?
$$

If $A x=0$, then the notion of relative accuracy is moot. Suppose, therefore, that $r=n$, so that $\mathcal{N}(\mathrm{A})=\{0\}$. Then the singular values of A give the solution straight away:

$$
\frac{\|\mathrm{A}(\mathrm{x}+\mathrm{h})-\mathrm{Ax}\|}{\|\mathrm{A} x\|}=\frac{\|\mathrm{Ah}\|}{\|\mathrm{Ax}\|} \leq \frac{\sigma_{1}\|\mathrm{~h}\|}{\sigma_{r}\|\mathrm{x}\|} \leq \frac{\sigma_{1}}{\sigma_{r}} \frac{1}{1000}
$$

The ratio

$$
\kappa=\frac{\sigma_{1}}{\sigma_{r}}
$$

is the condition number of A. If we know x to one part in a 1000 , then we know $\mathrm{A} \times$ to κ parts in a 1000 .

The smallest condition number is $\kappa=1$. Operators with κ near 1 are "well-conditioned". They map the unit sphere to a very-nearly-spherical ellipsoid.

Operators with large κ are "ill-conditioned". They stretch one direction much more than another.

Ill-conditioning doesn't matter much in the direction of the "largest" singular vector v_{1} :

$$
\frac{\left\|\mathrm{A}\left(\mathrm{v}_{1}+\mathrm{h}\right)-\mathrm{A} \mathrm{v}_{1}\right\|}{\left\|\mathrm{Av}_{1}\right\|}=\frac{\|\mathrm{Ah}\|}{\left\|\sigma_{1} \mathrm{u}_{1}\right\|} \leq \frac{\sigma_{1}\|\mathrm{~h}\|}{\sigma_{1}}=\frac{\|\mathrm{h}\|}{\left\|\mathrm{v}_{1}\right\|}
$$

In the direction of the "smallest" singular vector v_{r}, however, ill-conditioning can be disastrous:
$\frac{\left\|\mathrm{A}\left(\mathrm{v}_{r}+\mathrm{h}\right)-\mathrm{A} \mathrm{v}_{r}\right\|}{\left\|\mathrm{A} \mathrm{v}_{r}\right\|}=\frac{\|\mathrm{Ah}\|}{\left\|\sigma_{r} \mathbf{u}_{r}\right\|} \leq \frac{\sigma_{1}\|\mathrm{~h}\|}{\sigma_{r}}=\kappa \frac{\|\mathrm{h}\|}{\left\|\mathrm{v}_{r}\right\|}$.
Ill-conditioned operators magnify rounding errors in some directions much more than in others. If part of your answer is correct and part is not, check for ill-conditioning.

Gaussian elimination consists of operations of the form
$\left[\begin{array}{lll}a_{i i} & a_{i(i+1)} & \cdots \\ a_{j i} & a_{j(i+1)} & \cdots\end{array}\right] \rightarrow\left[\begin{array}{ccc}a_{i i} & a_{i(i+1)} & \cdots \\ 0 & a_{j(i+1)}-\frac{a_{i(i+1)} a_{j i}}{a_{i i}} & \cdots\end{array}\right]$.

$$
\begin{aligned}
& \sigma_{1}^{2}=1+\frac{\alpha^{2}}{2}+\sqrt{\alpha^{2}+\frac{\alpha^{4}}{4}} \\
& \sigma_{2}^{2}=1+\frac{\alpha^{2}}{2}-\sqrt{\alpha^{2}+\frac{\alpha^{4}}{4}}
\end{aligned}
$$

The operator for a step of elimination is

$$
\mathrm{A}=\left[\begin{array}{ll}
1 & 0 \\
\alpha & 1
\end{array}\right]
$$

where $\alpha=-\frac{a_{j i}}{a_{i i}}$. As always, we compute

$$
\begin{aligned}
\left\|\mathrm{A}\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]\right\|^{2} & =\left\|\left[\begin{array}{c}
\cos (\theta) \\
\alpha \cos (\theta)+\sin (\theta)
\end{array}\right]\right\|^{2} \\
& =1+2 \alpha \cos (\theta) \sin (\theta)+\alpha^{2} \cos ^{2}(\theta) \\
& =1+\frac{\alpha^{2}}{2}+\alpha \sin (2 \theta)+\frac{\alpha^{2}}{2} \cos (2 \theta)
\end{aligned}
$$

"Complete the cosine" to find
so the condition number is

$$
\begin{aligned}
\kappa & =\sqrt{\frac{1+\frac{\alpha^{2}}{2}+\sqrt{\alpha^{2}+\frac{\alpha^{4}}{4}}}{1+\frac{\alpha^{2}}{2}-\sqrt{\alpha^{2}+\frac{\alpha^{4}}{4}}}} \\
& =1+\frac{\alpha^{2}}{2}+\sqrt{\alpha^{2}+\frac{\alpha^{4}}{4}}
\end{aligned}
$$

The trouble: $\kappa \sim \alpha^{2}$ if $\alpha=-\frac{a_{j i}}{a_{i i}}$ is large.
At the very least, numerical elimination code should arrange for $|\alpha|<1$. That technique is called pivoting.

Suppose a rank-4 matrix has

$$
\sigma_{1}=7, \quad \sigma_{2}=5, \quad \sigma_{3}=3, \quad \text { and } \quad \sigma_{4}=10^{-15} .
$$

The condition number $\kappa=7 \times 10^{15}$ is enormous. Numerically speaking, σ_{4} probably has more to do with rounding errors than reality, and should probably have been zero. In this case, we say the numerical rank of A is 3 .

Dropping the last term in

$$
\mathrm{A}=7 \mathbf{u}_{1} \mathbf{v}_{1}^{T}+5 \mathbf{u}_{2} \mathbf{v}_{2}^{T}+3 \mathbf{u}_{3} \mathbf{v}_{3}^{T}+10^{-15} \mathbf{u}_{4} \mathbf{v}_{4}^{T}
$$

to get a rank-3 SVD is the same as setting $\sigma_{4}=$ 0 , which is the same as stopping the construction of the SVD one step earlier.

Storage space for A requires $m n$ values, while

$$
\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}
$$

requires $r(1+m+n)$.
If the (numerical) rank r is much less than m and n, then the SVD requires much less storage than A. An array of pixels in a photograph might therefore be compressed using the SVD.

If $\mathrm{A}: R^{n} \rightarrow R^{n}$ is invertible, then U and V are orthogonal matrices, and an SVD of A^{-1} is

$$
\begin{equation*}
\mathrm{A}^{-1}=\left(\mathrm{U} \Sigma \mathrm{~V}^{T}\right)^{-1}=V \Sigma^{-1} \mathrm{U}^{T} \tag{PI}
\end{equation*}
$$

Since Σ is diagonal with positive diagonal entries, its inverse is simple to compute.

Equation (PI) makes sense even if A is not invertible. The result is the pseudoinverse:

$$
\mathrm{A}^{\dagger}=\left[\begin{array}{lll}
\mathrm{v}_{1} & \mathrm{v}_{2} & \cdots
\end{array} \mathrm{v}_{r}\right]\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sigma_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\sigma_{r}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{u}_{1}^{T} \\
\mathrm{u}_{2}^{T} \\
\vdots \\
\mathrm{u}_{r}^{T}
\end{array}\right] .
$$

$\mathrm{A}^{\dagger}: R^{m} \rightarrow R^{n}$ maps the span of the \mathbf{u}_{j}, which is the range of A , to the span of the v_{i}, which is the row space in the domain of A . Furthermore,

$$
\mathrm{A}^{\dagger} \mathrm{A}=\mathrm{VV}^{T} \quad \text { and } \quad \mathrm{AA}^{\dagger}=\mathrm{UU}^{T},
$$

the orthogonal projections onto, respectively, the row space in the domain, and the range of A.

Remark: The condition number of A^{\dagger} is $\frac{\frac{1}{\sigma_{r}}}{\frac{1}{\sigma_{1}}}=$ $\frac{\sigma_{1}}{\sigma_{r}}=\kappa$. If A is well-conditioned, then so is the pseudoinverse.
If A is ill-conditioned, then the best conditioned directions for A are the worst conditioned directions for the pseudoinverse.

The SVD is useful in least-squares problems.
Example: In the simplest case, we want to know whether data points $\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]$ lie on a line $a x+b y+c=0$. The least-squares solution chooses a, b, and c to minimize

$$
\sum_{i=1}^{m}\left(a x_{i}+b y_{i}+c\right)^{2}=\left\|\left[\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
\vdots & \vdots & \vdots \\
x_{m} & y_{m} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right\|^{2}
$$

over all possible a, b, and c. O.K., that's too easy: just take $a=b=c=0$. I guess we really want to know if there is a non-trivial minimum. Suppose we require $a^{2}+b^{2}+c^{2}=1$. Then we want

$$
\min _{a^{2}+b^{2}+c^{2}=1}\left\|\left[\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
\vdots & \vdots & \vdots \\
x_{m} & y_{m} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right\|^{2}
$$

which is just σ_{3}^{2}, square of the smallest singular value of the (data) matrix $\mathrm{X}=\left[\begin{array}{ccc}x_{1} & y_{1} & 1 \\ \vdots & \vdots & \vdots \\ x_{m} & y_{m} & 1\end{array}\right]$. The "smallest" right singular vector v_{3} gives the optimal estimate for the line's coefficients,

$$
\left[\begin{array}{l}
\hat{a} \\
\hat{b} \\
\hat{c}
\end{array}\right]=\mathrm{v}_{3} .
$$

This is a problem in which the smallest singular value is what we seek first. The smaller σ_{3} is, the better the line fits the data.

How do I go about designing a voice compression algorithm?

Fourier is frequently disappointing because it requires harmonics commensurate with frame length.

What if

$$
s(t)=\sum_{j} a_{j} \cos \left(\omega_{j} t\right)+b_{i} \sin \left(\omega_{j} t\right) ?
$$

(By Slide 4's $a \cos (\alpha)+b \sin (\alpha)=r \cos (\alpha-$ φ), all phases of sinusoids of frequency ω_{j} are represented here!)

For digital compression, we sample a signal and compress the samples.

How many "harmonics" do we need?

The (numerical) rank of

$$
\left[\begin{array}{cccc}
s_{0} & s_{1} & s_{2} & \cdots \\
s_{1} & s_{2} & s_{3} & \cdots \\
s_{2} & s_{3} & s_{4} & \cdots \\
s_{3} & s_{4} & s_{5} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

ought to be $2 \times$ \# of "harmonics" present.
If the numerical rank is r, then any $r+1$ columns are linearly dependent:

$$
c_{0} s_{k}+c_{1} s_{k+1}+\cdots+c_{r-1} s_{k+r-1}=s_{k+r}
$$

Find the c_{j} to predict the next sample from the previous r samples - Linear Predictive Coding. LPC is a discrete linear ODE describing the signal. To compress sound, the encoder transmits the c_{j} and the decoder applies them to some initial values.

