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Operator Norms 1/16

For x ∈ Rn and y ∈ Rm,

‖x‖ =

√√√√ n∑
j=1

x2
j ‖y‖ =

√√√√ m∑
i=1

y2
i

A : Rn → Rm is linear

‖A‖ = sup
‖x‖≤1

‖Ax‖ = sup
‖x‖=1

‖Ax‖

Example: Consider

A

[
x1

x2

]
=

x2 − x1

x2

x1

 =

−1 1
0 1
1 0

[x1

x2

]
.

∥∥∥∥A [x1

x2

]∥∥∥∥2

= (x2 − x1)2 + x2
2 + x2

1

= 2
(
x2

1 − x1x2 + x2
2

)
.

Parameterize the unit vector

x(θ) =

[
x1

x2

]
=

[
cos(θ)
sin(θ)

]
,

so

‖Ax(θ)‖2 = 2− sin(2θ).

The most A can stretch a unit vector is

‖A‖ = sup
θ∈[0,2π)

√
2− sin(2θ) =

√
3.
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θ = 3π
4 maximizes ‖Ax(θ)‖ =

√
2− sin(2θ), so a

unit vector which A stretches the most is

v1 =

[
cos
(

3π
4

)
sin
(

3π
4

) ] =

[
−
√

2
2√
2

2

]
,

and its corresponding image Av1 is

−1 1
0 1
1 0

 v1 =


√

2√
2

2

−
√

2
2

 =
√

3︸︷︷︸
σ1

 2
√

6
6√

6
6

−
√

6
6


︸ ︷︷ ︸

u1

.

v1 is a right singular vector,

u1 is the corresponding left singular vector,

σ1 = ‖A‖ =
√

3 is A’s largest singular value.

Wait, there’s more!

θ = π
4 minimizes ‖Ax(θ)‖ =

√
2− sin(2θ), so a

unit vector which A stretches the least is

v2 =

[
cos
(
π
4

)
sin
(
π
4

) ] =

[ √
2

2√
2

2

]
,

and the corresponding image Av2 is−1 1
0 1
1 0

 v2 =

 0√
2

2√
2

2

 = 1︸︷︷︸
σ2

 0√
2

2√
2

2


︸ ︷︷ ︸

u2

.

Observe that v1 ⊥ v2 (from sin(2θ), e.g.) and

u1 ⊥ u2 (from dumb luck, or not?).
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v1 & v2 are an orthonormal basis of R2, so ∀ x,

x = v1v1
T x + v2v2

T x,

Ax = σ1u1v1
T x + σ2u2v2

T x,

So A =σ1u1v
T
1 + σ2u2v

T
2

=

 | |
u1 u2

| |

[σ1 0
0 0

][
− v1

T −
− v2

T −

]

+

 | |
u1 u2

| |

[ 0 0
0 σ2

][
− v1

T −
− v2

T −

]

=

 | |
u1 u2

| |


︸ ︷︷ ︸

U

[
σ1 0
0 σ2

]
︸ ︷︷ ︸

Σ

[
− v1

T −
− v2

T −

]
︸ ︷︷ ︸

VT

is a Singular Value Decomposition of A.

In our example,−1 1
0 1
1 0

 =

 2
√

6
6 0
√

6
6

√
2

2

−
√

6
6

√
2

2

[√3 0
0 1

][
−
√

2
2

√
2

2√
2

2

√
2

2

]

U has orthonormal columns, so UTU = I2×2 and

UUT = orthogonal projection onto 〈u1, u2〉.

V has orthonormal columns, so VTV = I2×2 and

VVT = orthogonal projection onto 〈v1, v2〉.

Σ is diagonal, with non-negative entries.

yxT is an outer product, a rank-1 matrix or

a dyad.

The SVD represents A as a linear combination

of two rank-1 matrices, both of whose “y”s and

both of whose “x”s are orthonormal.
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Lemma: V, U Hilbert spaces, A : V → U linear.

If the unit vector v0 satisfies

‖A‖ = ‖Av0‖ ,

then

Av1 ⊥ Av0 whenever v1 ⊥ v0.

In other words, A〈v0〉⊥ ≤ 〈Av0〉⊥.

Lemma’s lemma (“Complete the cosine”):

a cos(α) + b sin(α) = r cos(α− ϕ),

where

r =
√
a2 + b2, cos(ϕ) =

a

r
, & sin(ϕ) =

b

r
.

Proof of the lemma: v1 may as well be a unit

vector. Since v1 ⊥ v0,

v(θ) = cos(θ)v0 + sin(θ)v1

is a unit vector for every θ.

‖Av(θ)‖2 = cos2(θ) ‖Av0‖2

+ 2 sin(θ) cos(θ) (Av0,Av1)

+ sin2(θ) ‖Av1‖2

=‖Av0‖
2+‖Av1‖2

2 + ‖Av0‖2−‖Av1‖2
2 cos(2θ)

+ (Av0, Av1) sin(2θ)

=‖Av0‖
2+‖Av1‖2

2 + r cos(2θ − ϕ),

where, by the lemma’s lemma,

r =

√(
‖Av0‖2−‖Av1‖2

2

)2

+ (Av0, Av1)
2
.
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So

‖Av0‖2 =
‖Av0‖2 + ‖Av1‖2

2

+

√(
‖Av0‖2−‖Av1‖2

2

)2

+ (Av0, Av1)
2

> ‖Av0‖2 if (Av0,Av1) 6= 0.

////

The proof holds for any Hilbert spaces, not just

finite-dimensional spaces.

The lemma is a differential condition for ex-

trema of a function (the norm) subject to a

constraint (to unit vectors): at a maximizer v0,

movement in any allowed direction (perpendic-

ular to v0) must not increase the length of the

image u0; hence must move orthogonal to the

image.

If ‖v(θ)‖2 = 1, then

0 =
d

dθ
‖v(θ)‖2 = 2v(θ)T v′(θ),

so the derivative is orthogonal to the vector.

Likewise, at an extremum,

0 =
d

dθ
‖Av(θ)‖2 = 2v(θ)TATAv′(θ),

so Av0 is orthogonal to the image of v′(θ).
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We construct the SVD of A recursively.

Step 1: Find a unit vector v1 for which

‖A‖ = ‖Av1‖ = σ1,

and a normalized image u1 for which

Av1 = σ1u1.

By the lemma, A maps

S1 = 〈v1〉 −→ 〈u1〉
S1
⊥ = 〈v1〉⊥ −→ 〈u1〉⊥

Step 2: S1
⊥ = 〈v1〉⊥ is a Hilbert space. Find a

unit vector v2 ∈ S1
⊥ for which

sup
v∈S1⊥
‖v‖=1

‖Av‖ = ‖Av2‖ = σ2,

and a normalized image u2 for which

Av2 = σ2u2.

Since 〈v2〉⊥ in S1
⊥ is 〈v1, v2〉⊥, the lemma says

A maps

S2 = 〈v1, v2〉 −→ 〈u1, u2〉
S2
⊥ = 〈v1, v2〉⊥ −→ 〈u1, u2〉⊥

Furthermore, A stretches every vector in 〈v1, v2〉
by at least σ2:

‖A(α1v1 + α2v2)‖2 = ‖α1σ1u1 + α2σ2u2‖2

= σ2
1 ‖α1u1‖2 + σ2

2 ‖α2u2‖2

≥ σ2
2

(
α2

1 + α2
2

)
= σ2

2 ‖α1v1 + α2v2‖2

because u1 ⊥ u2, σ1 ≥ σ2, and v1 ⊥ v2.



SVDs (cont.) 7/16

Step k: Set Sk−1 = 〈v1, · · · , vk−1〉. Then Sk−1
⊥

is a Hilbert space. Find a unit vector vk ∈
Sk−1

⊥ for which

sup
v∈Sk−1

⊥

‖v‖=1

‖Av‖ = ‖Avk‖ = σk,

and a normalized image uk for which

Avk = σkuk.

By the lemma, A maps

Sk = 〈v1, . . . , vk〉 −→ 〈u1, . . . , uk〉
Sk⊥ = 〈v1, . . . , vk〉⊥ −→ 〈u1, . . . , uk〉⊥

Furthermore, σk ≤ σk−1,

‖Av‖ ≥ σk ‖v‖ ∀ v ∈ 〈v1, . . . , vk〉, and

‖Av‖ ≤ σk ‖v‖ ∀ v ∈ 〈v1, . . . , vk〉⊥.

Iterate until σr+1 = 0. Then

‖Av‖ ≥ σr ‖v‖ ∀ v ∈ Sr = 〈v1, . . . , vr〉
‖Av‖ = 0 ∀ v ∈ Sr⊥ = 〈v1, . . . , vr〉⊥

so

〈v1, . . . , vr〉⊥ = N (A).

For any x,

x = v1v
T
1 x + · · ·+ vrv

T
r x + n,

where n ∈ N (A). Then

Ax = u1σ1v
T
1 x + · · ·+ urσrv

T
r x,= UΣVT x

so an SVD exists,

〈u1, . . . , ur〉 is A’s range or column space, and

r is the rank of A.
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SVDs represent operators as sums of rank-1 op-

erators:

A =

r∑
i=1

uiσiv
T
i .

The “bases” {vi} and {ui} are orthonormal, so

term i is a (scalar) projection onto vi, “stretched”

by σi, “pointing” in the direction of ui.

Since the σi are non-increasing,

‖Av‖ ≥ σk ‖v‖ ∀ v ∈ 〈v1, . . . , vk〉
‖Av‖ ≤ σk ‖v‖ ∀ v ∈ 〈v1, . . . , vk〉⊥

The most “rank-1” information about A is con-

tained in u1σ1v
T
1 . The most “rank-2” informa-

tion is contained in u1σ1v
T
1 + u2σ2v

T
2 , etc.

Schmidt sought low-rank approximations of op-

erators.

The SVD has a “tidy representation” as

A = UΣVT =

 | |
u1 · · · ur
| |

σ1 0
. . .

0 σr

−v1
T−

...
−vrT−


where σ1 ≥ σ2 ≥ . . . ≥ σr.
Since the vi are orthonormal, VVT is the or-

thogonal projection onto the span of the vi, and

similarly for UUT . Also, VTV = Ir×r = UTU.

The SVD is especially useful in applications re-

quiring the rank of A.

If you already know the spectral theorem, you

can use Lagrange Multipliers to find vi:

∇‖Avi‖2 = λi∇‖vi‖2 ⇒ ATAvi = λivi.

Left multiply by vTi to verify λi = ‖Avi‖2 = σ2
i .



Fundamental Theorem | δ-ε Estimates 9/16

Since

A = UΣVT ,

an SVD for the transpose is

AT = VΣUT

〈u1, . . . , ur〉⊥ is the left null space of A, and

〈v1, . . . , vr〉 is the row space.

The rank of AT is r, the rank of A.

These conclusions are collectively known as the

Fundamental Theorem of Linear Algebra.

Furthermore, the singular values of AT are the

same as the singular values of A.

The maximum- and minimum-stretching prop-

erties of the singular values imply the “δ-ε” esti-

mates

‖Ax2 − Ax1‖ ≤ σ1 ‖x2 − x1‖

for all x1 and x2, and

σr ‖x2 − x1‖ ≤ ‖Ax2 − Ax1‖

for all x1 and x2 in the row space of A.

A is one-to-one on the row space, so it is one-to-

one if r = n.

If A is one-to-one, then it maps any region of

(n-dim’l) volume V to a region of (n-dim’l) vol-

ume
∏
σiV .

If A is onto, then it maps a δ-ball into a σrδ

ball. This is a “hard” Open Mapping Theorem.
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Suppose we know x to one part in a thousand.

How much relative accuracy can we ascribe to

Ax? In other words, if

‖h‖
‖x‖

<
1

1000
,

what can we say about

‖A(x + h)− Ax‖
‖Ax‖

?

If Ax = 0, then the notion of relative accuracy

is moot. Suppose, therefore, that r = n, so that

N (A) = {0}. Then the singular values of A

give the solution straight away:

‖A(x + h)− Ax‖
‖Ax‖

=
‖Ah‖
‖Ax‖

≤ σ1 ‖h‖
σr ‖x‖

≤ σ1

σr

1

1000

The ratio

κ =
σ1

σr

is the condition number of A. If we know x to

one part in a 1000, then we know Ax to κ parts

in a 1000.

The smallest condition number is κ = 1. Opera-

tors with κ near 1 are “well-conditioned”. They

map the unit sphere to a very-nearly-spherical

ellipsoid.

Operators with large κ are “ill-conditioned”.

They stretch one direction much more than an-

other.
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Ill-conditioning doesn’t matter much in the di-

rection of the “largest” singular vector v1:

‖A(v1 + h)− Av1‖
‖Av1‖

=
‖Ah‖
‖σ1u1‖

≤ σ1 ‖h‖
σ1

=
‖h‖
‖v1‖

.

In the direction of the “smallest” singular vector

vr, however, ill-conditioning can be disastrous:

‖A(vr + h)− Avr‖
‖Avr‖

=
‖Ah‖
‖σrur‖

≤ σ1 ‖h‖
σr

= κ
‖h‖
‖vr‖

.

Ill-conditioned operators magnify rounding er-

rors in some directions much more than in oth-

ers. If part of your answer is correct and part is

not, check for ill-conditioning.
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Gaussian elimination consists of operations of

the form[
aii ai(i+1) · · ·
aji aj(i+1) · · ·

]
→
[
aii ai(i+1) · · ·
0 aj(i+1) −

ai(i+1)aji
aii

· · ·

]
.

The operator for a step of elimination is

A =

[
1 0
α 1

]
where α = −ajiaii . As always, we compute

∥∥∥∥A [ cos(θ)
sin(θ)

]∥∥∥∥2

=

∥∥∥∥[ cos(θ)
α cos(θ) + sin(θ)

]∥∥∥∥2

=1 + 2α cos(θ) sin(θ) + α2 cos2(θ)

=1 +
α2

2
+ α sin(2θ) +

α2

2
cos(2θ).

“Complete the cosine” to find

σ2
1 = 1 +

α2

2
+

√
α2 +

α4

4

σ2
2 = 1 +

α2

2
−
√
α2 +

α4

4
,

so the condition number is

κ =

√√√√√1 + α2

2 +
√
α2 + α4

4

1 + α2

2 −
√
α2 + α4

4

= 1 +
α2

2
+

√
α2 +

α4

4
.

The trouble: κ ∼ α2 if α = −ajiaii is large.

At the very least, numerical elimination code

should arrange for |α| < 1. That technique is

called pivoting.
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Suppose a rank-4 matrix has

σ1 = 7, σ2 = 5, σ3 = 3, and σ4 = 10−15.

The condition number κ = 7× 1015 is enormous.

Numerically speaking, σ4 probably has more to

do with rounding errors than reality, and should

probably have been zero. In this case, we say

the numerical rank of A is 3.

Dropping the last term in

A = 7u1v
T
1 + 5u2v

T
2 + 3u3v

T
3 + 10−15u4v

T
4

to get a rank-3 SVD is the same as setting σ4 =

0, which is the same as stopping the construc-

tion of the SVD one step earlier.

Storage space for A requires mn values, while

r∑
i=1

σiuiv
T
i

requires r(1 +m+ n).

If the (numerical) rank r is much less than m

and n, then the SVD requires much less stor-

age than A. An array of pixels in a photograph

might therefore be compressed using the SVD.
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If A : Rn → Rn is invertible, then U and V are

orthogonal matrices, and an SVD of A−1 is

A−1 =
(
UΣVT

)−1
= VΣ−1UT . (PI)

Since Σ is diagonal with positive diagonal en-

tries, its inverse is simple to compute.

Equation (PI) makes sense even if A is not in-

vertible. The result is the pseudoinverse:

A† = [ v1 v2 · · · vr ]


1
σ1

0 · · · 0

0 1
σ2
· · · 0

...
...

. . .
...

0 0 · · · 1
σr



uT1
uT2
...
uTr

 .

A† : Rm → Rn maps the span of the uj , which

is the range of A, to the span of the vi, which

is the row space in the domain of A. Further-

more,

A†A = VVT and AA† = UUT ,

the orthogonal projections onto, respectively,

the row space in the domain, and the range of

A.

Remark: The condition number of A† is
1
σr
1
σ1

=
σ1

σr
= κ. If A is well-conditioned, then so is the

pseudoinverse.

If A is ill-conditioned, then the best conditioned

directions for A are the worst conditioned direc-

tions for the pseudoinverse.
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The SVD is useful in least-squares problems.

Example: In the simplest case, we want to

know whether data points

[
xi
yi

]
lie on a line

ax + by + c = 0. The least-squares solution

chooses a, b, and c to minimize

m∑
i=1

(axi + byi + c)2 =

∥∥∥∥∥∥∥∥

x1 y1 1
x2 y2 1
...

...
...

xm ym 1


 ab
c


∥∥∥∥∥∥∥∥

2

over all possible a, b, and c. O.K., that’s too

easy: just take a = b = c = 0. I guess we really

want to know if there is a non-trivial minimum.

Suppose we require a2 + b2 + c2 = 1. Then we

want

min
a2+b2+c2=1

∥∥∥∥∥∥∥
 x1 y1 1

...
...

...
xm ym 1


 ab
c


∥∥∥∥∥∥∥

2

which is just σ2
3 , square of the smallest singular

value of the (data) matrix X =

 x1 y1 1
...

...
...

xm ym 1

 .
The “smallest” right singular vector v3 gives the

optimal estimate for the line’s coefficients, âb̂
ĉ

 = v3.

This is a problem in which the smallest singular

value is what we seek first. The smaller σ3 is,

the better the line fits the data.



Sound 16/16

How do I go about designing a voice compres-

sion algorithm?

Fourier is frequently disappointing because it

requires harmonics commensurate with frame

length.

What if

s(t) =
∑
j

aj cos(ωjt) + bi sin(ωjt)?

(By Slide 4’s a cos(α) + b sin(α) = r cos(α −
ϕ), all phases of sinusoids of frequency ωj are

represented here!)

For digital compression, we sample a signal and

compress the samples.

How many “harmonics” do we need?

The (numerical) rank of
s0 s1 s2 · · ·
s1 s2 s3 · · ·
s2 s3 s4 · · ·
s3 s4 s5 · · ·
...

...
...

. . .


ought to be 2× # of “harmonics” present.

If the numerical rank is r, then any r+1 columns

are linearly dependent:

c0sk + c1sk+1 + · · ·+ cr−1sk+r−1 = sk+r.

Find the cj to predict the next sample from the

previous r samples — Linear Predictive Coding.

LPC is a discrete linear ODE describing the sig-

nal. To compress sound, the encoder transmits

the cj and the decoder applies them to some

initial values.


