Portland-Corvallis, Febr 2023

Chemical Reaction Networks

Based on various sources, among which:

J. J. P. Veerman, T. Whalen-Wagner, E. Kummel *Chemical Reaction Networks in a Laplacian Framework*, **Chaos, Solitons, and Fractals** 136, Article 112859, 2023.

J. J. P. Veerman, Math/Stat, Portland State Univ., Portland, OR 97201, USA.

email: veerman@pdx.edu

SUMMARY:

- * We start by describing boundary operators and how they can be used to build Laplacians.
- * Since the eigenvalues of a Laplacian L have non-negative real part, and so the long term behavior of the differential equations $\dot{x} = -Lx$ and $\dot{x} = -xL$ is dominated by the zero eigenvalues and their eigenvectors: the left and right kernels of L.
- * The differential equations governing the behavior of chemical reaction networks can be built up using the boundary operators. This gives rise, very naturally, to a Laplacian formulation of the dynamics.
- * These differential equations are *nonlinear*. In spite of that, in many cases, the Laplacian approach can be used to describe the global dynamics of the network.

OUTLINE:

The headings of this talk are color-coded as follows:

Boundary Operators

Kernels of Laplacians

Chemical Reaction Networks

Difference with Earlier Work

The Zero Deficiency Theorem

Further 0 Deficiency Results

BOUNDARY OPERATORS

The Boundary Matrices

Definition: Given a digraph G, define matrices B (for Begin) and E (for End), as maps Edges \rightarrow Vertices.

$$E_{ij} = \begin{cases} 1 & \text{if vertex } i \text{ ends edge } j \\ 0 & \text{else} \end{cases}$$

$$B_{ij} = \begin{cases} 1 & \text{if vertex } i \text{ starts edge } j \\ 0 & \text{else} \end{cases}$$

Edges are columns. Vertices are rows.

Consistent with **definition** of boundary operator in topology:

$$\partial := E - B$$

From Boundary to Adjacency

Let v number of vertices. Want an operator mapping \mathbb{C}^v to itself. Thus EE^T , EB^T , BE^T , and BB^T are natural candidates. We investigate these operators.

FACT 1:

$$(\mathbf{EE^T})_{ij} = \sum_k E_{ik} E_{jk}$$

is the # edges that end in i and in j.

Thus it is the diagonal in-degree matrix.

Similarly, BB^T is the diagonal <u>out</u>-degree matrix.

FACT 2:

$$(\mathbf{E}\mathbf{B}^{\mathbf{T}})_{ij} = \sum_{k} E_{ik} B_{jk}$$

is the # edges that start in j and end in i. It is the **comb.** in-degree adj. matrix Q (as in [8]). And $\mathbf{BE^T}$ is the **comb.** out-degree adj. matrix or Q^T .

Lemma: In the notation of [8], we have:

$$D = EE^T$$
 and $Q = EB^T$

Exercise: Check the facts as well as the ones mentioned for BB^T and BE^T .

Exercise: Interpret as operators $\mathbb{C}^e \to \mathbb{C}^e$ (*e* number of edges).

... and on to Laplacians

The Lemma immediately implies:

Theorem 1: In the notation of [8], we have:

$$L = E(E^T - B^T)$$
 and $L_{\text{out}} = -B(E^T - B^T)$

where L_{out} is the Laplacian of the graph G with all orientations reversed.

The example in the next pages illustrate the following two remarks.

Remark1: Be careful to note that $L_{\text{out}} \neq L^T$!!

Remark 2: Note that the sum of L and L_{out} is the Lapl. of the underlying graph G. Thus:

Corollary: We have:

$$\underline{L} = L + L_{\text{out}} = (E - B)(E^T - B^T) = \partial \partial^T$$

Remark: This is the traditional definition of the Laplacian in topology.

Re-Definition: L is the standard comb. Lapl. of [8, 9, 10, 11]. Better notation in this context: From now on, replace L by $L_{\rm in}$,

Example

And $\underline{L} = L_{\text{in}} + L_{\text{out}}$ is symmetric. (Note that the edge between vertices 6 and 7 doubles or acquires weight 2 in this process.)

Exercise: Find these Laplacians from Theorem 1.

Weighted Laplacians

Definition: We can "weight" the edges. Let W be a diagonal weight matrix.

$$L_{\text{in},W} = (EW)(E^T - B^T)$$

We drop the subscript "W". In particular

$$\mathcal{L}_{\rm in} = (ED^{-1})(E^T - B^T)$$

where $D_{ii} = 1$ if the in-degree in 0. (see [8])

Remark: Note that

$$\left[(EW)B^T \right]_{ij} = \sum_{k} E_{ik} W_{kk} B_{jk}$$

which means the weights go to the edges (not the vertices).

Be careful: The symbol \mathcal{L}_{out} is reserved for the out-degree rw Laplacian. The edges have a weight different from that of \mathcal{L}_{in} . See example.

Example with Weights

Notice that the sum of these two is NOT symmetric. Edge 6 $(\mathcal{L}_{in,4,3} \text{ and } \mathcal{L}_{out,3,4})$ received two different weights in each case.

LEFT AND RIGHT KERNELS OF LAPLACIANS

Connectedness of Digraphs

Undirected graphs are connected or not. But...

Definition:

- * A directed edge from i to j is indicated as $i \rightarrow j$ or ij.
- * A digraph G is strongly connected if for every ordered pair of vertices (i, j), there is a directed path $i \rightsquigarrow j$.
- * A digraph G is **unilaterally connected** if for every ordered pair of vertices (i, j), there is a path $i \rightsquigarrow j$ or a path $j \rightsquigarrow i$.
- * A digraph G is weakly connected if the underlying UNdirected graph is connected.
- * A digraph *G* is **not connected:** if it is not weakly connected.

Definition: Multilaterally connected: weakly connected but not unilaterally connected.

Note: Maximal Strongly Connected Component: **SC** component, or **SCC**.

Graph Structure

leadership = SCC w. no incoming edges: {1} and {3,4,5} following = SCC w. no outgoing edges: {2} and {6,7}

Think of arrows as indicating flow of information!!!

Definition: Only the blue definitions are used downstream.

- * Reachable Set $R(i) \subseteq V$: $j \in R(i)$ if $i \rightsquigarrow j$.
- * Reach $R \subseteq V$: A maximal reachable set. Or: a maximal unilaterally connected set.
- * Exclusive part $H \subseteq R$: vertices in R that do not "see" vertices from other reaches. If not in cabal, called **minions**.
- * Common part $C \subseteq R$: vertices in R that also "see" vertices from other reaches.
- * Leadership or Cabal $B \subseteq H$: set of vertices from which the entire reach R is reachable. If single, called leader.

The Right Kernel of L

Theorem 2 [1]: Spectrum of L has non-negative real part.

From Now On: (i) There are exactly k reaches $\{R_i\}_{i=1}^k$. ii) L is a general Laplacian of the form L = D - DS [1].

Theorem 3 [1]: The algebraic and geometric multiplicity of the eigenvalue 0 of L equals k.

Thus: no non-trivial Jordan blocks in kernel!

Theorem 4 [1]: The *right* kernel of L consists of the *column* vectors $\{\gamma_1, \dots, \gamma_k\}$, where:

$$\gamma_m(j) = 1$$
 if $j \in H_m$ (excl.) $\gamma_m(j) \in (0,1)$ if $j \in C_m$ (common) $\gamma_m(j) = 0$ if $j \notin R_m$ (reach) $\sum_{m=1}^k \gamma_m = 1$ (all ones vector)

$$\gamma_1^T = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$
 and $\gamma_2^T = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$

The Left Kernel of L

Theorem 5 [5]: The *left* kernel of L consists of the *row* vectors $\{\bar{\gamma}_1, \dots, \bar{\gamma}_k\}$, where:

$$\begin{array}{ll} \bar{\gamma}_m(j) > 0 & \text{if} \quad j \in B_m \text{ (cabal)} \\ \bar{\gamma}_m(j) = 0 & \text{if} \quad j \notin B_m \\ \sum_{j=1}^k \bar{\gamma}_m(j) = 1 \\ \left\{\bar{\gamma}_m\right\}_{m=1}^k \text{ are orthogonal} \end{array}$$

Mnemonic: the horizontal "bar" on $\bar{\gamma}$ indicates a (horizontal) row vector.

Thus in this case the row vectors $\{\bar{\gamma}_1, \dots, \bar{\gamma}_k\}$ are a set of orthogonal invariant probability measures.

$$\bar{\gamma}_1 = (1 \ 0 \ 0 \ 0 \ 0 \ 0)$$
 and $\bar{\gamma}_2 = (0 \ 0 \ \frac{1}{3} \ \frac{1}{3} \ \frac{1}{3} \ 0 \ 0)$

CHEMICAL
REACTION
NETWORKS
"CRN"s

Chemical Reaction Networks $E + S0 \leftrightarrow ES0 \rightarrow E + S1 \leftrightarrow ES1 \rightarrow E + S2$ $F + S2 \leftrightarrow FS2 \rightarrow F + S1 \leftrightarrow FS1 \rightarrow F + S0$

From a presentation by David Angeli, Univ of Firenze, Italy. Chemical networks can have thousands of vertices.

A Simple Example

Reaction 1: $2H_2 + O_2 \rightarrow 2H_2O$

Reaction 2: $C + O_2 \rightarrow CO_2$

Concentration of $C + O_2$ is an ambiguous concept. Can measure only concentrations of molecules: H_2O , H_2 . But *rate of change* of conc. of O_2 due to (eg) reaction 1 is fine!

Set x_i equal to concentration of following molecules:

$$x_1 \leftrightarrow H_2, \ x_2 \leftrightarrow O_2, \ x_3 \leftrightarrow H_2O, \ x_4 \leftrightarrow C, \ x_5 \leftrightarrow CO_2$$

Assume all molecules are unif. distr. in the mix.

Observation 1. Reaction 1 says: for every 2 molecules H_2 and 1 molecule O_2 that disappear we get 2 molecules H_2O back. **Observation 2.** Reaction rate is proportional to the chance that that the reacting molecules "meet". For reaction 1 that is $x_1^2x_2$. The constant of the proportionality is called k_1 .

The same for reaction 2. So:

$$\dot{x}_1 = -2k_1x_1^2x_2
\dot{x}_2 = -k_1x_1^2x_2 - k_2x_2x_4
\dot{x}_3 = 2k_1x_1^2x_2
\dot{x}_4 = -k_2x_2x_4
\dot{x}_5 = k_2x_2x_4$$

Observation 2 is called the mass action principle.

Two More Definitions

$$v_1 \stackrel{e_1}{\rightarrow} v_2$$
 where $v_3 \stackrel{e_2}{\rightarrow} v_4$ where $v_3 \stackrel{e_2}{\rightarrow} v_4$ where $v_4 : C + O_2 \rightarrow CO_2$ with $v_3 \leftrightarrow H_2, \ x_2 \leftrightarrow O_2, \ x_3 \leftrightarrow H_2O, \ x_4 \leftrightarrow C, \ x_5 \leftrightarrow CO_2$

Definition: # *i*-molecules (belonging to x_i) at *j*th vertex v_j equals S_{ij} . S has no zero rows. Rate \dot{x}_i equals the sum of rates of change of those mixtures in which that molecule occurs.

$$\dot{x} = S\dot{v}$$
 or $\dot{x}_j = \sum_i S_{ji}\dot{v}_i$.

Exercise: Show that for this example

$$S = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(Hint: vertex v_1 contains 2 x_1 -molecules and 1 x_2 -molecule.)

Mass Action Principle. The probability ψ_i that all molecules of v_i "meet" is proportional to

$$\psi_i(x) := \prod_j x_j^{S_{ji}}$$

Exercise: Show that for this example

$$\psi_1 = x_1^2 x_2$$
, $\psi_2 = x_3^2$, $\psi_3 = x_2 x_4$, $\psi_4 = x_5$

The Basic Idea ...

Definition: (conc. means concentration)

 \mathbb{R}^c "conc.s of molecules" variables x_i \mathbb{R}^v "conc.s of reacting mixtures" variables v_i \mathbb{R}^e "reaction rates"

*i*th reaction denoted by e_i .

Relevant Operators:

$$\psi$$
 (non-linear) : $\mathbb{R}^c \to \mathbb{R}^v$
 E, B (linear) : $\mathbb{R}^e \to \mathbb{R}^v$ and E^T, B^T : $\mathbb{R}^v \to \mathbb{R}^e$
 S (linear) : $\mathbb{R}^v \to \mathbb{R}^c$

Key Idea 1. Use mass action to give ode for conc.s of $\{x_i\}_{1}^{c}$.

$$\mathbb{R}^{c} \stackrel{S}{\longleftarrow} \mathbb{R}^{v} \stackrel{\partial = E - B}{\longleftarrow} \mathbb{R}^{e} \stackrel{W}{\longleftarrow} \mathbb{R}^{e} \stackrel{B^{T}}{\longleftarrow} \mathbb{R}^{v} \stackrel{\psi}{\longleftarrow} \mathbb{R}^{c}$$

Key Idea 2. Form a **network** by putting together the reactions $v_i \stackrel{e_{\ell}}{\to} v_j$ with the v_i as its vertices. Our example:

$$\begin{array}{ccc} v_1 & \stackrel{e_1}{\rightarrow} & v_2 \\ v_3 & \stackrel{e_2}{\rightarrow} & v_4 \end{array}$$

 v_1 is "conc." of the reacting mixture, i.e. $2H_2 + O_2$, etc. Look at the associated Laplacian !!!

...and Putting Things Together

Prescription 1: Form the diff eqns step by step:

 $\mathbb{R}^c \to \mathbb{R}^v$; convert conc.s to mass action terms; ψ $\mathbb{R}^v \to \mathbb{R}^e$; assign initial m.a. term to each edge; B^T $\mathbb{R}^e \to \mathbb{R}^e$; weight each e_i by its reaction rate; W $\mathbb{R}^e \to \mathbb{R}^v$; add @endvertex, subtr. @beginvertex; E - B $\mathbb{R}^v \to \mathbb{R}^c$; convert to conc. of molecules; S

$$\mathbb{R}^{c} \stackrel{S}{\longleftarrow} \mathbb{R}^{v} \stackrel{\partial = E - B}{\longleftarrow} \mathbb{R}^{e} \stackrel{W}{\longleftarrow} \mathbb{R}^{e} \stackrel{B^{T}}{\longleftarrow} \mathbb{R}^{v} \stackrel{\psi}{\longleftarrow} \mathbb{R}^{c}$$

Prescription 2: Recall out-degree Lapl. (Thm 1), so that

$$\dot{x} = -SL_{\text{out}}^T \psi(x)$$

Exercise: Compute B, E, and W for this example.

Exercise: Use B, E, and W to compute L_{out} and L_{out}^T .

Exercise: Use S, ψ , and L_{out}^T to show that for the example:

$$\dot{x}_1 = -2k_1x_1^2x_2
\dot{x}_2 = -k_1x_1^2x_2 - k_2x_2x_4
\dot{x}_3 = 2k_1x_1^2x_2
\dot{x}_4 = -k_2x_2x_4
\dot{x}_5 = k_2x_2x_4$$

DIFFERENCE WITH EARLIER WORK

Blue Beats Green?

Since pioneering work by Horn, Jackson, and Feinberg in the 1970's [2, 3, 4], the split into nonlinear and linear parts has been different from what we propose.

Below the classical split (green) and the proposed split (blue).

LINEAR NONLINEAR
$$\mathbb{R}^{c} \overset{S}{\longleftarrow} \mathbb{R}^{v} \overset{\partial=E-B}{\longleftarrow} \mathbb{R}^{e} \overset{W}{\longleftarrow} \mathbb{R}^{e} \overset{B^{T}}{\longleftarrow} \mathbb{R}^{v} \overset{\psi}{\longleftarrow} \mathbb{R}^{c}$$

$$\mathbb{R}^{c} \xleftarrow{S} \mathbb{R}^{v} \xleftarrow{\partial = E - B} \mathbb{R}^{e} \xleftarrow{W} \mathbb{R}^{e} \xleftarrow{B^{T}} \mathbb{R}^{v} \xleftarrow{\psi} \mathbb{R}^{c}$$

The matrix W contains the reaction rates which are (a) difficult to measure, and (b) may strongly influence the result (zero deficiency).

	advantage	disadvantage
Green	no dependence on W	weaker results
Blue	stronger results	results may depend on W

To get stronger results, need kernels of directed Laplacians, not (well-)known in the 70's.

THE ZERO DEFICIENCY THEOREM

"I'm sorry, there's no such thing as a chocolate deficiency."

The Theorem

Recall:
$$\dot{x} = -SL_{\text{out}}^T \psi(x)$$

Definition. The Laplacian deficiency is given by

$$\delta := \dim \operatorname{Ker} SL_0^T - \dim \operatorname{Ker} L_0^T$$

Figure: dim of Im L_o^T equals that of Im SL_o^T . So $\delta = 0$ and None of the dynamics is hidden by S!

Lemma. The condition $\delta = 0$ is equivalent to

$$\operatorname{Im} S^T + \operatorname{Ker} L_o = \mathbb{R}^v$$

The theorem that initiated the mathematical study of CRNs was proved in 1972 [2]. We give a modern version due to [7].

Theorem. (Zero Laplacian Deficiency) Suppose a CRN has $\delta = 0$. Then

$$\dot{x} = -SL_{\text{out}}^T \psi(x)$$

has a (strictly) pos. equil. \iff its graph is CSC.

Proof of \Longrightarrow

In what follows, x denotes a vector in \mathbb{R}^v , a a real number, and $\mathbf{1}_S$ a vector in \mathbb{R}^v that is 1 on S and 0 else. x > 0 means componentwise, Ln is a componentwise function etc.

Proof of \Longrightarrow . Assume

$$\dot{\mathbf{x}} = -\mathbf{S} \mathbf{L}_{\text{out}}^T \boldsymbol{\psi}(\mathbf{x})$$

has pos. equil. x^* , then prove CSC.

Existence of pos. equil. $(x^* > 0 \text{ and } SL^T\psi(x^*) = 0)$ shows

$$\psi(x^*) > 0$$
 such that $SL_{\text{out}}^T \psi(x^*) = 0$

No hidden dynamics (or zero defciciency) then gives

$$L_{\text{out}}^T \psi(x^*) = 0$$
 or $\psi(x^*)^T L_{\text{out}} = 0$

By theorems on left kernels (see [9]), we may therefore write

$$\psi(x^*)^T = \sum_{i=m}^k a_m \bar{\gamma}_m \text{ and } \forall a_m > 0$$

But $\psi(x^*) > 0$ and γ_m are positive on cabals only. So every vertex is in a cabal. Therefore the graph is CSC. **Done.**

Proof of \Leftarrow

Exercise: Show that if x > 0, then $\operatorname{Ln} \psi(x) = S^T \operatorname{Ln} x$.

Exercise: Show that if a > 0 and x > 0, then

$$\operatorname{Ln} ax = \operatorname{ln} a \cdot \mathbf{1} + \operatorname{Ln} x$$

Proof of \(\equiv \). Assume CSC, then establish pos. equil. or

$$\exists x^* > 0 \text{ such that } \psi(x^*) = \sum_{i=m}^k a_m \bar{\gamma}_m^T \text{ and } \forall a_m > 0$$

Exercise: Use above exercises to rewrite **blue** equation as

$$S^T \operatorname{Ln} x^* = \sum_{m=1}^k (\ln a_m) \, \mathbf{1}_{\mathbf{R}_{\mathbf{m}}} + \operatorname{Ln} \, \sum_{m=1}^k \bar{\gamma}_m^T.$$

where $\mathbf{1}_{\mathbf{R}_{\mathbf{m}}}$ is the characteristic vector of the *m*th reach (component in this case).

Proof continued: Then re-arrange this as

$$\operatorname{Ln} \sum_{m=1}^{k} \bar{\gamma}_{m}^{T} = S^{T} \operatorname{Ln} x^{*} - \sum_{m=1}^{k} (\ln a_{m}) \mathbf{1}_{\mathbf{R}_{\mathbf{m}}}$$

1st term of RHS ranges over $\text{Im } S^T$ and 2nd over Ker L.

This has a solution if

$$\operatorname{Im} S^T + \operatorname{Ker} L = \mathbb{R}^v.$$

Guaranteed by zero deficiency condition (use the Lemma). Done.

Returning to the Example:

$$\begin{array}{ccc} v_1 & \stackrel{e_1}{\rightarrow} & v_2 \\ v_3 & \stackrel{e_2}{\rightarrow} & v_4 \end{array}$$

This graph has two weak components, neither of which is SC.

$$S = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } L_o^T = \begin{pmatrix} k_1 & 0 & 0 & 0 \\ -k_1 & 0 & 0 & 0 \\ 0 & 0 & k_2 & 0 \\ 0 & 0 & -k_2 & 0 \end{pmatrix}$$

Exercise: Find the span of Im L_o^T and of Ker S.

Conclude from the exercise that $\delta = 0$.

Conclude from 0-def thm that there is no strictly pos equil.

Confirm that conclusion from the equations:

$$\dot{x}_1 = -2k_1x_1^2x_2
\dot{x}_2 = -k_1x_1^2x_2 - k_2x_2x_4
\dot{x}_3 = 2k_1x_1^2x_2
\dot{x}_4 = -k_2x_2x_4
\dot{x}_5 = k_2x_2x_4$$

We Can Do A Little Better

Theorem [7]. Suppose $\delta = 0$. Then

$$\dot{x} = -SL_{\text{out}}^T \psi(x)$$

has pos. orbit x(t) with $\operatorname{Ln} x(t)$ bdd \iff graph is CSC.

Note: \iff follows from 0-def. But \implies strengthens it.

The 0-def thm says: CSC implies existence of equilibrium. So:

Corollary. A 0-def system with an orbit x(t) whose Log is bounded (see figure) must have a fixed point.

New Beats Old

Consider the following network CRN, based on work by [12],

Exercise: Show that $\delta = 0$ (for $k_i > 0$).

Definition. The older definition of the deficiency is

$$\delta_{old} := \dim \operatorname{Ker} S\partial - \dim \operatorname{Ker} \partial$$

Exercise: Show that $\delta_{old} = 1$. (Thus old thm has no implications, while new thm predicts absence of pos. bdd. orbits.)

FURTHER 0 DEFICIENCY RESULTS

Sorry Professor, you're right: I DID skip a line of the instructions...

Explicit Equations for Equilibrium

Exercise: Show that for any matrix $(\operatorname{Im} A)^{\perp} = \operatorname{Ker} A^{T}$.

Thus the orbit x(t) of

$$\dot{x} = -SL_{\text{out}}^T \psi(x)$$

 \dot{x} is parallel to Im SL_o^T and orthogonal to Ker L_o^TS .

Given a system with v vertices, k reaches, and c concentrations. Denote by z_0 the orth. proj. x(0) to $\operatorname{Ker} L_o S^T$.

Theorem [7]. If $\delta = 0$, equilibria determined by v polynomial equations in v unknowns $\{u_i\}_{i=1}^{v-k}$ and $\{a_m\}_{m=1}^k$:

$$\psi\left(z_0 + \sum_{i=1}^{v-k} u_i r_i\right) = \sum_{m=1}^k a_m \bar{\gamma}_m^T,$$

the $\{r_i\}_{i=1}^{v-k}$ are a basis for $\operatorname{Im} SL^T$ and $\{\bar{\gamma}_m\}_{m=1}^k$ for $\operatorname{Ker} L^T$.

The Example Again:

Reaction 1:
$$2H_2 + O_2 \rightarrow 2H_2O$$

Reaction 2: $C + O_2 \rightarrow CO_2$
 $\psi_1 = x_1^2 x_2$, $\psi_2 = x_3^2$, $\psi_3 = x_2 x_4$, $\psi_4 = x_5$

$$S = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } L_o^T = \begin{pmatrix} k_1 & 0 & 0 & 0 \\ -k_1 & 0 & 0 & 0 \\ 0 & 0 & k_2 & 0 \\ 0 & 0 & -k_2 & 0 \end{pmatrix}$$

Exercise: Show that Ker SL_o^T is spanned by

$$(1,0,1,0,0)^T$$
, $(1/2,-1,0,1,0)^T$, $(-1/2,1/2,0,0,1)^T$.

Exercise: Show that c_3 , c_4 , and c_5 are preserved by the flow:

$$c_3 = x_1 + x_3$$
, $c_4 = \frac{1}{2}x_1 - x_2 + x_4$ and $c_5 = -\frac{1}{2}x_1 + x_2 + x_5$

Exercise: Show that Im SL_o^T has dimension 2.

Exercise: Set x_1 and x_2 as independent variables. Eliminate x_3 , x_4 , x_5 in favor of the c_i to get equilibrium eqns:

$$\psi_{1} = x_{1}^{2}x_{2} = 0$$

$$\psi_{2} = (c_{3} - x_{1})^{2} = a_{1}$$

$$\psi_{3} = x_{2}(c_{4} - \frac{1}{2}x_{1} + x_{2}) = 0$$

$$\psi_{4} = c_{5} + \frac{1}{2}x_{1} - x_{2} = a_{2}$$

Given the constants c_i , we can solve for x_1 , x_2 , a_1 , and a_2 .

Existence and Uniqueness of Equilibria

$$\dot{x} = -SL_{\text{out}}^T \psi(x)$$

Flow is parallel to $\operatorname{Im} SL_o^T$ and orthogonal to $\operatorname{Ker} L_oS^T$.

Theorem [7]. Suppose $\delta = 0$ and CSC.

Then for every $z \in \text{Ker } LS^T$, there <u>exists</u> a <u>unique</u> $y \in \text{Im } SL^T$ such that y + z is a positive equilibrium.

The proof of this result is indirect and we refer to [7].

Local Stability of Equilibria

$$\dot{x} = -SL_{\text{out}}^T \psi(x)$$

Theorem [7]. Suppose $\delta = 0$ and CSC.

The ω -limit set of any positive initial condition either equals that equilibrium or is a bounded set contained in the boundary of the positive orthant.

The proof of this result is indirect and we refer to [7].

References

- [1] J. S. Caughman, J. J. P. Veerman, *Kernels of Directed Graph Laplacians*, **Electronic Journal of Combinatorics**, 13, No 1, 2006.
- [2] M. Feinberg. *Complex balancing in general kinetic systems*, **Archive for Rational Mechanics and Analysis**, 49(3):187–194, 1972.
- [3] F. J. M. Horn, Necessary and Sufficient Conditions for Complex Balancing in Chemical Kinetics, Archive for Rational Mechanics and Analysis, 49(3):172–186, 1972.
- [4] F. J. M. Horn and R. Jackson, *General mass action kinetics*, **Archive for Rational Mechanics and Analysis**, 47(2):81–116, 1972.
- [5] J. J. P. Veerman, E. Kummel, *Diffusion and Consensus on Weakly Connected Directed Graphs*, **Linear Algebra and Its Applications**, accepted, 2019.
- [6] J. J. P. Veerman, R. Lyons, *A Primer on Laplacian Dynamics in Directed Graphs*, **Nonlinear Phenomena in Complex Systems** No. 2, Vol. 23, No. 2, pp. 196-206, 2020.
- [7] J. J. P. Veerman, T. Whalen-Wagner, E. Kummel *Chemical Reaction Networks in a Laplacian Framework*, accepted, **Chaos, Solitons, and Fractals**, 2022.

- [8] J. J. P. Veerman, *Digraphs I, Lecture Notes*, https://web.pdx.edu/~veerman/2019-Digraphs-1.pdf
- [9] J. J. P. Veerman, *Digraphs II*, *Lecture Notes*, https://web.pdx.edu/~veerman/2019-Digraphs-2.pdf
- [10] J. J. P. Veerman, *Digraphs III, Lecture Notes*, https://web.pdx.edu/~veerman/2019-Digraphs-3.pdf
- [11] J. J. P. Veerman, *Digraphs IV*, *Lecture Notes*, https://web.pdx.edu/~veerman/2019-Digraphs-4.pdf
- [12] L. Wang, E. D. Sontag, *On the number of steady states in a multiple futile cycle*, J. Math. Biol., 1(57, 29-52, 2008.