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SUMMARY:

* We start by describing boundary operators and how they can
be used to build Laplacians.

* Since the eigenvalues of a Laplacian L have non-negative
real part, and so the long term behavior of the differential equa-
tions x = —Lx and x = —x L 1s dominated by the zero eigen-
values and their eigenvectors: the left and right kernels of L.

* The differential equations governing the behavior of chemi-
cal reaction networks can be built up using the boundary opera-
tors. This gives rise, very naturally, to a Laplacian formulation
of the dynamics.

* These differential equations are nonlinear. In spite of that,
in many cases, the Laplacian approach can be used to describe
the global dynamics of the network.
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The Boundary Matrices

/6'@>\7
—~@—5 &8 O
@ @ P

@
Definition: Given a digraph G, define matrices B (for Begin)
and E (for End), as maps Edges — Vertices.

I 1if vertex i ends edge j
E.. =
g 0 else
1 if vertex i starts edge j
B.. =
g 0 else
(00000000) (11000000)
10000000 00000000O0
00000001 00001100
E=100000100 B=]100000010
00000010O0 00000001
01100000 00010000
00011000 00100000

\ \

N

Edges are columns. Vertices are rows.

Consistent with definition of boundary operator in topology:
o.:=FE—-B



From Boundary to Adjacency

Let v number of vertices. Want an operator mapping C" to it-
self. Thus EET, EBT, BE", and BB" are natural candidates.
We investigate these operators.

FACT 1:
Ty _—
(EE"); = ) EEj
k

1s the # edges that end in i and 1n j.
Thus it is the diagonal in-degree matrix.
Similarly, BB! is the diagonal out-degree matrix.

FACT 2:
Ty —
(EB"); = )’ Ey By
k

1s the # edges that start in j and end in i.
It is the comb. in-degree adj. matrix Q (as in [8]).
And BE! is the comb. out-degree adj. matrix or Q7.

Lemma: In the notation of [8], we have:
D=EE" andQ = EB’
Exercise: Check the facts as well as the ones mentioned for

BBT and BE".

Exercise: Interpret as operators C¢ — C¢ (e number of edges).



... and on to Laplacians

The Lemma immediately implies:

Theorem 1: In the notation of [8], we have:
L=EE"-B"Y and L, =-BE"-B"

where L is the Laplacian of the graph G with all orien-
tations reversed.

The example in the next pages illustrate the following two re-
marks.

Remarkl: Be careful to note that L, # L' !!

Remark 2: Note that the sum of L and L 1s the Lapl. of the
underlying graph G. Thus:

Corollary: We have:
L=L+L,,=(E-B)E"-B")=00"

Remark: This is the traditional definition of the Laplacian in
topology.

Re-Definition: L is the standard comb. Lapl. of [8, 9, 10, 11].
Better notation in this context: From now on, replace L by L, ,
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(0 00 0 0 0 0)
-11 0 0 O O O
O 01 0 -1 0 O
L. =l00-11 0 0 0
O 00 -11 0 O
-10 0 0 O 2 -1
L0 0-10 0 -1 2
(2 -1 0 0 0 -1 0
OO0 0 O O O O
00 2 -1 0 0 -1
L,=|l00 0 1 -10 0
O 0 -1 0 1 0 O
OO0 0 0 0 1 -1
00 0 0 0 —1 1

And L = L, + L, 1s symmetric. (Note that the edge between
vertices 6 and 7 doubles or acquires weight 2 in this process.)

Exercise: Find these Laplacians from Theorem 1.



Definition: We can “weight" the edges. Let W be a diagonal
weight matrix.

L.y =(EW)E" - B")
We drop the subscript “W". In particular
L. =(ED"WET - BT)
where D;; = 1 if the in-degree in 0. (see [8])
Remark: Note that
(EW)BT|, = ) E,W,B,
k

ij
which means the weights go to the edges (not the vertices).

Be careful: The symbol L is reserved for the out-degree rw
Laplacian. The edges have a weight different from that of L. .
See example.



Example with Weights
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(0 0 O 0O O 0 0 )
11 0 00 0 O
0O 0 1 O -1 O 0
.= 0 0 -1 1.0 0 0
O 0 0 -11 0 0
~1/20 0 0 0 1 -1/2
L 0 0-1/20 0 -1/2 1 |
(1 -1/20 0 0 -1/2 0 )
O 0 O O 0 0 0
0 0 1-1/20 0 -1/2
c.=]0 0 0 1 -1 0 0
O 0 0 -1 1 0 0
O 0 O O 0 1 -1
o000 0 -1 1

Notice that the sum of these two is NOT symmetric. Edge 6
(L;,45and L, 5 4) received two different weights in each case.
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LEFT AND RIGHT
KERNELS OF
LAPLACIANS
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Connectedness of Digraphs

Undirected graphs are connected or not. But...
‘\‘
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Definition:

* A directed edge from i to j is indicated as i — j or ij.

* A digraph G 1s strongly connected if for every ordered pair
of vertices (i, j), there is a directed path i « j.

* A digraph G is unilaterally connected if for every ordered
pair of vertices (i, j), there 1s a path i w j or a path j w 1.

* A digraph G is weakly connected if the underlying UNdi-
rected graph is connected.

* A digraph G is not connected: if it is not weakly connected.

Definition: Multilaterally connected: weakly connected but
not unilaterally connected.

Note: Maximal Strongly Connected Component: SC compo-
nent, or SCC.
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Graph Structure

p cabal 2
echusive\part 1

common part 1 =common part 2 = {6,1} - < /

/
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exclusivepart2 _ o = = a @/' \

- P - ! ]
4 /4 /-)/| @ T
V4 ' 1 N P 4
cabal 1 - )
s / ~ ! reach2 _ “
(4 , - o V4 - = -
- e o =
|@ reach 1 '
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leadership = SCC w. no incoming edges: {1} and {3,4,5}
following = SCC w. no outgoing edges: {2} and {6,7}

Think of arrows as indicating flow of information!!!

Definition: Only the blue definitions are used downstream.
* Reachable Set R(i) C V: j € R@()ifi » j.
* Reach R C V': A maximal reachable set. Or: a maximal

unilaterally connected set.
* Exclusive part H C R: vertices in R that do not “see" ver-

tices from other reaches. If not in cabal, called minions.
* Common part C C R: vertices in R that also “see"” vertices

from other reaches.
* Leadership or Cabal B C H: set of vertices from which

the entire reach R is reachable. If single, called leader.
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The Right Kernel of L

Theorem 2 [1]: Spectrum of L has non-negative real part.

From Now On: (i) There are exactly k reaches {R;}" .
1) L is a general Laplacian of the form L = D — DS [1].

Theorem 3 [1]: The algebraic and geometric multiplicity
of the eigenvalue 0 of L equals k.

Thus: no non-trivial Jordan blocks in kernel!

Theorem 4 [1]: The right kernel of L consists of the column
vectors {y,, -, 7.}, where:

Y.(J) =1 if je€H, (excl)
Ym(J) € (0,1) if j € C. (common)
Ym(J) =0 if j¢& R, (reach)

anzl ¥, =1 (all ones vector)
/’ !
®—e

/\/
.J
.‘X

)/T=<11()OO

: and  yf=(00111

(O8N BV
W
N—"
W=
W I
N—"
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The Left Kernel of L

Theorem 5 [5]: The left kernel of L consists of the row vec-
tors {y,, -, 7.}, where:

Ym(j) >0 if j € B, (cabal)
Ym() =0 if j¢&B,
Y ) =1
{)7m},’; _, are orthogonal

Mnemonic: the horizontal ““bar'' on 7 indicates a (horizon-
tal) row vector.

Thus 1in this case the row vectors {7, -:-,7,} are a set of or-
thogonal invariant probability measures.

N

o —
‘J
‘X

— — I 1T 1
7=(1000000) and 7=(0013400)
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From a presentation by David Angeli, Univ of Firenze, Italy.
Chemical networks can have thousands of vertices.
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Reaction 1: 2H,+0, - 2H,0
Reaction 2: C+0, - CO,

Concentration of C + O, 1s an ambiguous concept.
Can measure only concentrations of molecules: H,O, H,.
But rate of change of conc. of O, due to (eg) reaction 1 is fine!

Set x; equal to concentration of following molecules:
x,< H,, x,0,, xyo HO, x,C, x5 CO,
Assume all molecules are unif. distr. in the mix.

Observation 1. Reaction 1 says: for every 2 molecules H, and
1 molecule O, that disappear we get 2 molecules H,O back.

Observation 2. Reaction rate is proportional to the chance that

2
1

that the reacting molecules “meet". For reaction 1 that1s x
The constant of the proportionality is called k.

X,.

The same for reaction 2. So:
¢, = —2k, x>
X1 = TR XX

Observation 2 is called the mass action principle.

17



e, C+0, - CO,

X, Hy, x,<0,, x30 H,O, x,<C, xs CO,

€

vy = U
)

Uy = Uy

where with

Definition: # i-molecules (belonging to x;) at jth vertex v,
equals S;;. .S has no zero rows. Rate x; equals the sum of rates
of change of those mixtures in which that molecule occurs.

x=35v or X; = Z S;;0; .
i

Exercise: Show that for this example
(2000])

1
0
1
0

— o O O

SO O =
S OO

\ )
(Hint: vertex v, contains 2 x,-molecules and 1 x,-molecule.)

Mass Action Principle. The probability y; that all molecules
of v; “meet" 1s proportional to

S,
ZOREY | B
j

Exercise: Show that for this example

_ 2 _ 2 _ _
Vi =Xy X2, Wp = X5, W3 = XpXy s Wy = Xs

18



Definition: (conc. means concentration)

R “conc.s of molecules” variables x;
RY “conc.s of reacting mixtures" variables v,
Re¢ “reaction rates"

ith reaction denoted by e;.

Relevant Operators:
v (non-linear) : R¢ —» RY
E, B (linear) : RE >R’ and E!,B" : R" > R®
S (linear) : RY - R

Key Idea 1. Use mass action to give ode for conc.s of {x;}{.

S 0=E—B W BT %
R¢ «— RY «— Rf «— R¢ «— RY «— [R€

Key Idea 2. Form a network by putting together the reactions

V; A v; with the v; as its vertices. Our example:

€1
€2
vy — Uy
v, 1s "conc." of the reacting mixture, i.e. 2H, + O,, etc. Look
at the associated Laplacian !!!
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Prescription 1: Form the diff eqns step by step:

R¢ — RY; convert conc.s to mass action terms; 1/
R’ — R assign initial m.a. term to each edge; B!
R¢ — R®  weight each e, by its reaction rate; 14
R¢ — R"; add @endvertex, subtr. @beginvertex; E — B
RY — R°¢; convert to conc. of molecules; S
S 0=E—B 14 BT W
RC — RU — Re — Re — RU — RC
" _J/
1T

out

Prescription 2: Recall out-degree Lapl. (Thm 1), so that
X = —SLOTuty/(x)

Exercise: Compute B, E, and W for this example.
Exercise: Use B, E, and W to compute L, and L! .

Exercise: Use S, v, and LOTut to show that for the example:
X = —2k1x%x2
Xy = —klex2 — kyX5X,
Xy = 2k1x%x2

—kyX)X,

X.
N
Il
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DIFFERENCE
WITH
EARLIER WORK

)
m\b\

"The wheel was great, but what
have you done for me lately?”
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Blue Beats Green?

Since pioneering work by Horn, Jackson, and Feinberg in the
1970’s [2, 3, 4], the split into nonlinear and linear parts has
been different from what we propose.

Below the classical split (green) and the proposed split (blue).

LINEAR NONLINEAR
1 I 1
S 0=E—B 114 BT %
R e RY «— R «— R — RY «— RS

LINEAR

NONLINEAR
. - |
¢ S p O=E-B ., W e B v v c
R «— R «— R «— R® «— R «— R
\\§ ~ _J
1T

out

The matrix W contains the reaction rates which are (a) diffi-
cult to measure, and (b) may strongly influence the result (zero
deficiency).

advantage disadvantage
Green | no dependence on W weaker results
Blue stronger results results may depend on W

To get stronger results, need kernels of directed Laplacians,
not (well-)known 1n the 70’s.
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“I’'m sorvy, there’s no such thing
as a chocolate deficiency.”

23



Recall: x = —SLT y/(x)

Definition. The Laplacian deficiency is given by
6 .= dim Ker SLOT — dim Ker LOT

im L s, ImsL
Ker L /‘ﬂ I/ |/ o
Figure: dim of Im L equals that of In.SL’. So 6 = 0 and
None of the dynamics is hidden by § !

Lemma. The condition 6 = 0O is equivalent to
ImS’ + Ker L, = R”

The theorem that initiated the mathematical study of CRNs
was proved in 1972 [2]. We give a modern version due to [7].

Theorem. (Zero Laplacian Deficiency) Suppose a CRN has
6 = 0. Then
X = —SLOTuty/(x)

has a (strictly) pos. equil. < its graph is CSC.

24



In what follows, x denotes a vector in R”, a a real number,
and 14 a vector in R” thatis 1 on .§" and O else. x > 0 means
componentwise, Ln is a componentwise function etc.

Proof of —. Assume

. T

X = —SLouty/(x)
has pos. equil. x*, then prove CSC.

Existence of pos. equil. (x* > 0 and SL "y (x*) = 0) shows
w(x*) >0 suchthat SL' w(x*)=0

No hidden dynamics (or zero defciciency) then gives

T ®\ VA —
L w(x")=0 or w(x") L,,=0

By theorems on left kernels (see [9]), we may therefore write
k

w(x*)!' = Z a,y, and Va, >0

i=m

But w(x*) > 0 and y,, are positive on cabals only. So every
vertex is in a cabal. Therefore the graph is CSC. Done.

25



Exercise: Show that if x > 0, then Lny(x) = S"Ln x.

Exercise: Show that if a > 0 and x > 0, then
ILnax=Ina - 1+Lnx

Proof of <. Assume CSC, then establish pos. equil. or
k
3 x* > 0 such that y(x*) = Z a7 and Va, >0

i=m

Exercise: Use above exercises to rewrite blue equation as
k

k
S"Lnx* = ) (Ina,)1g_+Ln ) 7.

m=1 m=1
where 1y  1s the characteristic vector of the mth reach (com-
ponent in this case).

Proof continued: Then re-arrange this as

k k
Ln Z 773; = STLnx* - Z(ln a,) g _
m=1 m=1

Ist term of RHS ranges over Im S and 2nd over Ker L.
This has a solution if
Im ST + Ker L = R".

Guaranteed by zero deficiency condition (use the Lemma). Done.

26



€]
€
U3 — U4

This graph has two weak components, neither of which is SC.
( \

2000 (k0 0 0)

1010 40 0 0
S=10200]| and L' = 1

0 0 0 k, 0

0010 0 0 -1 0

0001 \ 2 %)

\ /

Exercise: Find the span of Im LZ and of Ker .S
Conclude from the exercise that 6 = 0.
Conclude from 0-def thm that there is no strictly pos equil.

Confirm that conclusion from the equations:
X| = —2klx%x2
Xy = —klx%xz — kyX5Xy
Xy = 2k1x%x2
Xy = —kyXpxy
Xs = kyXoxy
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Theorem [7]. Suppose 6 = 0. Then
X = —SLOTuty/(x)
has pos. orbit x(¢) with Ln x(¢) bdd < graph is CSC.

Note: <= follows from 0-def. But = strengthens it.

---------------------------------------

The 0-def thm says: CSC implies existence of equilibrium. So:

Corollary. A 0-def system with an orbit x(¢#) whose Log is
bounded (see figure) must have a fixed point.

28



Consider the following network CRN, based on work by [12],

kl
® . @@
2
Ky
TN Ke
@\@@—»
(100001
101000
o _|o10000
001100
000101
000010

Exercise: Show that 6 = 0 (for k; > 0).

Definition. The older definition of the deficiency is
0,14 -= dimKer S0 — dim Ker 0

Exercise: Show that 6,,;, = 1. (Thus old thm has no implica-
tions, while new thm predicts absence of pos. bdd. orbits.)
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FURTHER
0O DEFICIENCY
RESULTS

HAGEN@ 2013

Sorry Professor, you're right:
I DID skip a line of the instructions...
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Explicit Equations for Equilibrium

Exercise: Show that for any matrix (Im A)" = Ker A”.

Thus the orbit x(¢) of
X = —SLOTuty/(x)

X is parallel to Im S'L! and orthogonal to Ker L!'S.

Given a system with v vertices, k reaches, and c concentra-
tions. Denote by z, the orth. proj. x(0) to Ker LS.

Theorem [7]. If 6 = 0, equilibria determined by v polynomial
equations in v unknowns {u;}"_ and {a,,}*_ :

v—k k
W<20+ Z”i’"i) = Zam7nTz’
i=1

m=1

the {r;}"_" are a basis for Im SL” and {7,,}*_ for Ker L”.
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The Example Again:

Reaction 1: 2H,+0, - 2H,0

Reaction 2: C+0, - CO,
wlzx%xz, ‘/fzzxg, W3 = XoXy 5 Yy = X5

(

2000 (k, 0 0 0)

1010 50 0 0
S=[{0200] and L' = !

0 0 0 k, O
0010 0 0 —k. 0
0001 \ 2 5

\ )

Exercise: Show that Ker S'L! is spanned by
(1,0,1,0,0)", (1/2,-1,0,1,0)", (-1/2,1/2,0,0, )" .

Exercise: Show that c;, ¢4, and ¢ are preserved by the flow:

. 1 o
C3 —XI+X3, C4 —_ EXI_XZ+X4 aIld C5 —_ _EX1+X2+X5
Exercise: Show that Im SLOT has dimension 2.

Exercise: Set x; and x, as independent variables. Eliminate
X3, X4, X5 1n favor of the ¢, to get equilibrium eqns:

— 2 —
W, = X{X, = 0
_ 2 _

Y, = (c3 —1 X1) =
l//:), = x2(C4 — Exl + X2) = O
— 1 —
Yya= Gt X=Xy =4

Given the constants c;, we can solve for x, x,, a,, and a,.
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Existence and Uniqueness of Equilibria

X = —SLOTuty/(x)
Flow is parallel to Im.SL" and orthogonal to Ker LS.

Ker L,S" /

Theorem [7]. Suppose 6 = 0 and CSC.
Then forevery z € Ker LS, there exists aunique y € Im SL’

such that y + z 1s a positive equilibrium.

The proof of this result is indirect and we refer to [7].
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Local Stability of Equilibria

X = —SLOTuty/(x)

Theorem [7]. Suppose 6 = 0 and CSC.

The w-limit set of any positive initial condition either equals
that equilibrium or is a bounded set contained in the boundary
of the positive orthant.

The proof of this result is indirect and we refer to [7].
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