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SUMMARY:

* We start with a brief look at rings and fields and discuss
the consequences of allowing (or disallowing) division.

* Legendre guesses the prime number theorem (PNT) in 1808
[11]. Almost there in 1850: Chebyshev’s Theorem [4]: Stirling
and

(
2n
n

)
.

* In 1859, Riemann rocks the boat. Need complex analytic
functions [13]. Finally proved in 1896 independently by de la
Vallée-Poussin [8] and Hadamard [10]: The PNT. Our version
heavily relies on later proofs by Newman [12] and Zagier [16].

* In 1837, Dirichlet [6] complicates life: how many primes
occur in sequences of the form {n + mi}∞i=1 (arithmetic pro-
gressions): PNT Arithm. Progr. The complete solution uses
PNT [19].

* The continued fraction expansion as the most natural way
to approximate real numbers. How well do the rational ap-
proximants approximate reals is of fundamental importance in
many areas of mathematics (and physics). Here used as a tool
to visualize PNT and PNT Arithm Prog.
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OUTLINE:
The headings of this talk are color-coded as follows:

Rings and Fields

The Riemann Hypothesis

Continued Fractions

The Prime Number Theorem

Primes in Arithmetic Progressions

Extra Material
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1We leave out ideals and marriage counseling.
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An Uneasy Marriage: + and ×

0 2 4 6

6/3=2

2/3=?

3x2=6

Can add 2 and subtract 2 equally easily at will.
Can multiply at will: 3 · 2, but its inverse is touchy (at best).

Definition2. Field: × and + and inverses work (except 0−1).
Ring: same, except no multiplicative inverses.

Z is a ring. Q and R are fields. Polynomials with coefficients
in R also form a ring.

Definition. In a ring we have the following:
The zero is the (unique) additive identity.
A unit is an element with multiplicative inverse.
An irreducible3, an element (6= 0) not a product of 2 non-units.
A prime, p such that p | ab implies p | a or p | b.

What do we have in Z??
The zero is 0, the units are ±1, and primes and irreducibles
are the same.

2Grossly simplified.
3Outside number theory, this is often used as defn of a prime! In Z, the two notions coincide.
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First a Field, Then a Ring

1

2

34

5

6

0

1

2

34

5

6

0

Z mod 7:

Left, the relation additive inverse; right, multiplicative inverse.
Zero: 0. Units: all others.

Example: 3 · 4−1 =7 3 · 2 =7 6. And 6 · 4 =7 3.

1

2

3

4

5

0

1

2

3

4

5

0

Z mod 6:

Zero: 0. Units: 1 and 5.
. Irred’s: none. Primes: 2, 3, 4.
Example: 2 | ab. Then in Z: 2 | 6m+ab where ab ∈ {0, 2, 4}.
So either a or b is even. Thus 2 divides a or b. So 2 prime.
But: 2 =6 4 · 2. Thus 2 is reducible.
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The Two Sides of the Coin

Absence of multiplicative inverses =⇒
Some numbers may not have any (non-trivial) divisors.
This lack of division also brings us to the study of primes.
A very complex problem with many open conjectures.

Still, for all a and b in Z, there are q (quotient) and r(remainder):

a = qb + r |r| < b .

This is the division algorithm.
You end up doing (abstract) algebra.

To avoid Prime Problems, legislate division!
For every p and q in Z, define “formal” quotient “p : q”.
Now we get a field, the field of fractions of Z.
This field is in fact Q.

Other questions arise: we still cannot solve for x in x2 = 2.
Need to take limits, deal with different infinities...
You end up doing analysis.

A whole other can of worms.
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Open Problems: 3n+1

Definition. Define C : N→ N as follows:

C(n) :=


n/2 if n even.

3n + 1

2
if n odd.

Conjecture. For all n, eventually 2→ 1→ 2→ · · · .
Dividing all “evens” by 2, we get (from wikipedia), see [3]:

8



Open Problems: Goldbach’s Conjecture

Conjecture (1742). Every even number greater than two
is the sum of two primes, see [17].

10

20

1

3

5

7

9

10

5 odd pairs sum to 20

An odd number cannot be the sum of 2 primes (there is only
1 even prime). However, for 2n even:{

4 = 2 + 2 ; 6 = 3 + 3 ;

8 = 3 + 5 ; 10 = 5 + 5 = 3 + 7 ; · · ·

If primes are independent, then chance of both n − m and
n+m being prime is4 roughly 1/ ln(n−m) ln(n+m). So [17]

n−1∑
m=1

(ln(n−m) ln(n + m))−1 ≈ n/2(lnn)2

is the “expected” number of Goldbach pairs for 2n.
But they are not. See above.

4We’ll see this in a bit.
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Open Problems: Twin Prime Conjecture

Conjecture. There are infinitely many primes p such that
p + 2 is prime.

Note: there is only 1 pair of primes that differ by 1, nl: (2,3).
Here are some twin prime pairs.

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), · · · .
Also: 5 is the only number to occur in two twin prime pairs5.

Lowest member of twin prime pair less than 1000 (left) and
less than (10000) (right).

Generalized Conjecture. For any k > 0, there are in-
finitely many pairs of primes p such that p + 2k is prime.

Toy Idea. The above curve looks superficially like cxp where
p ≈ 4/3. Check numerically via scaling arguments.

5Because every 6 consecutive integers contain three evens and an odd multiple of 3.
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Drawing by Tim Ernst.
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The Riemann Hypothesis

Examples of unique analytic continuation.

1. Unique anal. cont’n of
∑
zn is 1/(1− z).

2.
∑ zn

n!
equals ez, is already analytic everywhere.

Definition. For z ∈ C the Riemann zeta function ζ(1 + z)
is the unique analytic continuation of

∑∞
n=1 n

−1−z .

Riemann: “crazy” assertion that locus of zeroes of analytic
cont’n of the zeta fn yields information about primes in N.
Or: complex anal. to solve a ‘discrete’ problem !

Approximate Riemann Hypothesis:
Zeroes of ζ(1 + z) lie on Re(z) ≤ −1/2.

RH remains most important unsolved prob of math.!
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More on the Riemann Hypothesis

ζ(z) has 1 pole: ∝ (z−1)−1 near 1. Well-defined for all z 6= 1.
Trivial zeroes: z = −2, −4, −6, etc. Easy to prove:

Full version of Riemann Hypothesis.
All non-trivial zeroes of ζ(z) have real part 1/2.
Or:
All non-trivial zeroes of ζ(1+z) have real part -1/2.
Red: Re ζ(1/2 + it), green: Im ζ(1/2 + it)

From wikipedia Riemann Hypothesis, August 18, 2022: “The
consensus of the survey articles ([2, 5, 14]) is that the evidence
for it is strong but not overwhelming, so that while it is prob-
ably true, there is reasonable doubt.”

Dyson: reduces RH to classifying 1D quasi-crystals [7].
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The Division Algorithm

Division Algorithm. ri < ri−1 positive integers.
There exist quotient qi and remainder ri+1 such that

ri−1 = riqi + ri+1 and ri+1 ∈ {0, · · · , ri − 1}

Now think of ri/ri−1 as rational numbers in (0, 1).

ri+1

ri
=

1

ri/ri−1
− qi

Note: qi is integer part of 1
ri/ri−1

. Denote integer part by b·c.

Why restrict to rationals? So:
Gauss Map. For simplicity x ∈ (0, 1)

T := x→ 1

x
−
⌊

1

x

⌋

(Taking limits, we are in analysis-land.)
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Continued Fractions

T is Gauss map and T is times 10 mod 1 map:

0
0

1

11/21/3

1
2

3

x
0

0

1

1

1
2

96

x

0
8

Cont’d fr’n expansion. Branches bk : Ik → [0, 1] (onto).
If x ∈ Ik, then first digit of expansion: x = [k, · · · ].

Example. Golden mean x = 0.5
(√

5− 1
)

= .618 · · · .
Gauss map: x = [1, · · · ]. Times 10: x = [6, · · · ].

Cont’d fr’n exp’n. Label branches T 2 so that TIk,` = I`.
If x ∈ Ik,`, then x = [k, `, · · · ].

Example. G’ss map: x = [1, 1, · · · ]. T’s 10: x = [6, 1, · · · ].

The 2nd convergent to x = [k, `, · · · ] is:

p2/q2 := [k, `] := zero of the bk,` branch .

Example. G’ss map: [1, 1] = 1/2. T’s 10: [6, 1] = 0.61.
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The Convergents ...

The location of these zeros is easily computed. So:
For the Gauss map

pn
qn

def≡ [a1, a2, · · · , an] =
1

a1 + 1
a2 + ··· 1an

.

For the times 10 map

pn
qn

def≡ [a1, a2, · · · , an] =

n∑
i=1

ai · 10−i .

Example. x = 0.5
(√

5− 1
)

= [0; 1, 1, 1, · · · ].

Convergents:

{
0

1
;

1

1
,

1

2
,

2

3
,

3

5
,

5

8
,

8

13
, · · ·

}
.

Example. 2π = [6; 3, 1, 1, 7, 2, 146, · · · ].

Convergents:

{
6

1
;

19

3
,

25

4
,

44

7
,

333

53
,

710

113
,

103993

16551
, · · ·

}
.
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... and their Properties

Arnold’s characterization of cont’d fr’s. Golden mean.

So instead of |x− p
q |, consider rotations: |qx− p|.

p

q

Main Theorem. If pn
qn

a cont’d fr’n convergent of x, then

|qnx− pn| < |q′x− p′|
for all q′ ∈ {1, · · · , qn+1 − 1} and all p′, except (pn, qn).
These are optimal approximations!
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Polar Plots of Integers

z(n) := nein for n ∈ {1, · · · , 50} and n ∈ {1, · · · , 3000}.

By the THM on previous page, the angular parts of z(n) and
z(n0) are closest if

ei(n+n0) = ein · ein0 = ei(n−2πm) ein0 ,

where
n

m
is a cont’d fr’n convergent of 2π, or

n

m
is one of

6

1
;

19

3
,

25

4
,

44

7
,

333

53
· · ·

Depending on number of pts plotted, you can see
6 (LEFT), 19, 25, 44 (RIGHT), 333, ... spiral arms.
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Cont’d Fr’s in Nature

The DNA molecule is based on the golden mean. It measures
34 angstroms long by 21 angstroms wide for each full cycle of its
double helix spiral. 21/34 (approx. 1.6190476) is a continued
fraction approximant of the golden mean (approx. 1.6180339)
[15].

A word of caution: In 1994, Gardner [9] writes: “Since the
Renaissance, an enormous literature has accumulated, most
of it nonsense, about the applications of the golden ratio to
architecture, painting, sculpture, nature, and even poetry and
music.”
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A Question

Kronecker: “Die ganzen Zahlen hat der liebe Gott
gemacht, alles andere ist Menschenwerk”

Question. Compute lcm (1, 2, · · · , n), then takes its nth
root. Do this for all n. Do you get anything as n gets large??

? ? ? ? ?

Let’s try:

n = 1 : 1.
n = 2 : 21/2 ≈ 1.41.
n = 3 : (2 · 3)1/3 ≈ 1.82.
n = 4 : (2 · 3 · 2)1/4 ≈ 1.86.
n = 5 : (2 · 3 · 2 · 5)1/5 ≈ 2.27.
n = 6 : (2 · 3 · 2 · 5)1/6 ≈ 1.98.
ETC.
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The Prime Number Theorem

Plots of ( lcm (1, 2, · · · , n))
1
n

Prime Number Theorem I or PNT I.

lim
n→∞

( lcm (1, 2, · · · , n))
1
n = e .

So Kronecker’s statement is false!
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A More Familiar Version

Much NumThy is motivated by: How many primes in Z?

PNT II. π(x) is number of primes p with 2 ≤ p ≤ x:

1. lim
x→∞

π(x)

(x/ lnx)
= 1 and 2. lim

x→∞

π(x)∫ x
2 ln t dt

= 1

(ln is natural logarithm.)

Left, x ≤ 103:
∫ x
2 ln t dt , π(x) , x/ lnx.

Right, x ≤ 105:
∫ x
2 ln t dt− x/ lnx , π(x)− x/ lnx.

Skewes number: least x with π(x) ≥
∫ x
2 ln t dt. Less than

10317.
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Chebyshev’s Complaint

We take n to be even.

Cheb. realized that
(
n
n/2

)
encodes marvelous properties:

1. It is an integer (by combinatorial defn).

2. Via the binomial thm: 2n

n+1 <
(
n
n/2

)
≤ 2n.

3.
(
n
n/2

)
contains primes in (n/2, n]:

∏
n
2<p≤n

p ≤
(
n
n/2

)
.

4. Unique factorization plus trick gives:
(
n
n/2

)
≤ nπ(n).

From 2, 3, and 4, he derives thm below. Very close (but no
cigar)! Result superseded by PNT proved in 1896 [10] and [8]!

Recall definition: π(x) is # primes p with 2 ≤ p ≤ x.

Chebyshev’s Thm. [4] in 1850

∀x ≥ K :
π(x)

x/ lnx
∈ [0.89, 1.11] (approximately) .

If a limit exists, it must be 1.

(9 years of effort failed to produce better results.)
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“Fast and Loose Proof” of PNT, 1

Via 2 and 3 of Cheb., you get that the product of primes
between x/2 and x is less than 2x. Take ln and divide by x:

1.
θ(x)

x
:=

1

x

∑
p≤x

ln p is bounded .

Definition. For z ∈ C and if well-defined, let

g(z) :=

∫ ∞
1

(
θ(x)

x
− 1

)
x−z−1 dx .

2. If g(0) exists (is finite), then lim
x→∞

θ(x)

x
= 1.

(This looks quite plausible and is in fact easy, though clever. )

3. lim
x→∞

θ(x)

x
= 1 if and only if lim

x→∞

π(x) lnx

x
= 1. BINGO

!
(ln p increases so agonizingly slowly that almost all p’s have

roughly same logarithm as that of the greatest prime).

The problem is the If, or: does g(0) exist???
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“Fast and Loose Proof” of PNT, 2

Riemann: 8 pages on numthy and compl. anal. [13] (1859).
Revolution: investigate analyticity of complex function g(z).
Changed course of number theory and mathematics in general.
Proof took another 40 years [10] and [8] (1896).

4. After considerable tricks, it turns out that g(z) can be
written as expression with ζ(1 + z) in the denominator.

Recall RH. Zeroes of ζ(1 + z) lie on Re(z) ≤ −1/2.

Zeroes lie on Re(z) < 0 is provable variant of RH. So g(z) anal
on Re(z) ≥ 0.

R

C
C

d

+
−

−L

Rd

DR

Intricate argument w. contour integr. in C proves:
5. “Tauberian” Thm. Recall g(z) :=

∫∞
1 f (x)x−z dx.

If g has anal. cont’n to Re(z) ≥ 0, then g(0) =
∫∞
1 f (x) dx

exists.

6. Bingo!
∫∞
1 f (x) dx exists. So 1, 2, 3 above prove PNT.
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Prime Gaps

PNT III. pn is the nth prime in N. lim
n→∞

pn
n lnn

= 1.

Another “somewhat unjustified” heuristic gives:

pn − pn−1 ∼ n lnn− (n− 1) ln(n− 1)

= lnn + (n− 1) ln

(
n

n− 1

)
≈ lnn + ln e .

Intuitively: the gap between pn and pn−1 is about 1 + lnn.

Prime gaps pn−pn−1 divided by 1+lnn for n in {1, · · · , 1000}.

Prime gaps are an active area of research. See, for instance,
the wikipedia entry on “prime gaps”.
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The Setting

0 8 16

1 3 5 7

If gcd(x, 8) = 2 (say), then x = 2 or x has non-triv divisor 2.
So with finite exceptions: p prime, then gcd(p, 8) = 1.
Or: (almost) all primes p are rel prime to 8.

Conclusion. An arithmetic progression AP with spac-
ing q

AP = {a, a+ q, a+ 2q, a+ 3q, · · · }
can contain > 1 primes only if a is rel prime to q.
Note: p ∈ AP means p =q a.

Defn. Z×q : integers modulo q and rel prime to q.

φ(q): cardinality of Z×q (Euler totient fn).

Example. Z×8 has elements 1, 3, 5, 7; q and φ(8) = 4.
Multiplication table: 12 =8 32 =8 52 =8 72 =8 1.
Elmts have mult. inverses =⇒ mult. Abelian group.
Z×q are precisely the units of the ring Z mod q.

Question. φ(q) ways of choosing a ∈ Z×q . What is the
density of primes in each of these arithmetic progressions???
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PNT for Arithmetic Progressions

PNT Arithm Progr: Πq,a(x) is number of primes p with
p ≤ x and p =q a with a rel prime to q. Then :

1. lim
x→∞

Πq,a(x)

(x/ lnx)
=

1

φ(q)
and 2. lim

x→∞

Πq,a(x)∫ x
2 ln t dt

=
1

φ(q)

Recall (left): our picture of z(n) = nein, n ≤ 3000.
Now (right): new picture of z(n) = pne

ipn, n ≤ 430.

These are all primes ≤ 3000. Note: 3000/ ln(3000) ≈ 375.

Observe that: 20 of 44 branches are populated.
These correspond exactly to rel primes mod 44: φ(44) = 20.
Primes are roughly equally distributed over these.
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Dirichlet’s Characters

Definition. A character of a finite Abelian group Z×q is a
homomorphism χ : Z×q → C×, i.e. χ(a)χ(b) = χ(ab).

In examples below, χ(a) are 4th rts of 1. φ(5) = φ(8) = 4.

Z×5 χ0 χ1 χ2 χ3

1 1 1 1 1
2 1 i -1 -i
3 1 -i -1 i
4 1 -1 1 -1

Z×8 χ(0,0) χ(0,1) χ(1,0) χ(1,1)

1 1 1 1 1
3 1 1 -1 -1
5 1 -1 1 -1
7 1 -1 -1 1

Euler’s Thm. Each element a of Z×q satisfies aφ(q) =q 1.

Thus χ(a)φ(q) = 1.
Thus χ(a) = e2πik/φ(q).

Characters form basis of a Discr Fourier Transf6

with added cond’n: respects group operation (multiplication).

Theorem. i) The rescaled characters of Z×q form an orthonor-

mal basis of the vector space Cφ(q).
ii) The row and column sums of the χ table are 0, except:
. a) column corresponding to ‘identity’ char. χ1 and
. b) row corresponding to ‘1’.
. Summing (a) or (b) yields φ(q).

Defn. The set of characters χ of Z×q are denoted by Xq.

6Simplified a bit here.
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Massage Problem to Look like PNT

Replace zeta function by Zq,a:

Zq,a(z) := exp

∑
χ∈Xq

χ(a) ln

( ∞∑
n=1

χ(n)

nz

) .

We do this because ...
1. χ1 is the identity character and behaves like ζ(z). The
other χ’s have average zero and are analytic in Re z > 0.

lnZq,a(z) =

( ∞∑
n=1

χ1(n)

nz

)
·exp

 ∑
χ∈Xq,χ6=χ1

χ(a) ln

( ∞∑
n=1

χ(n)

nz

)
2. Using properties of characters:

lnZq,a(1 + z) = φ(q)
∑
p-q

∞∑
n=1
pn=qa

1

npn(1+z)
.

Compare: ln ζ(1 + z) =
∑
p

∞∑
n=1

1

npn(1+z)
.

The pairs (n, p) such that p =q a dominate, because all other
contributions n ≥ 2 are bounded for Re z > 0. So lnZ almost
counts primes with residue a mod q.
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The Massage Works, ...

because all these computations mean that ...

1. Z behaves like ζ (same singularities).
2. Z ‘almost’ counts primes with residue a mod q.

Handy Definition. For any χ ∈ Xq, analytic cont’n of

L(χ, z) :=

∞∑
n=1

χ(n)

nz
.

is called a Dirichlet L-function in the literature.
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After massage, Follow Steps of PNT

1.
Θq,a(x)

x
:=

φ(q)

x

∏
p≤x
p=qa

ln p is bounded by Cheb.

Definition. For z ∈ C and if well-defined, let

G(z) :=

∫ ∞
1

(
Θq,a(x)

x
− 1

)
x−z−1 dx .

2. If g(0) exists (is finite), then lim
x→∞

Θq,a(x)

x
= 1. Easy.

3. lim
x→∞

Θq,a(x)

x
= 1 iff

Πq,a(x) lnx

x
= 1. Same proof as PNT.

4. G(z) can be written as expression with Zq,a(1 + z) in
the denominator.

Zeroes of Zq,a(1 + z) lie on Im(z) < 0. So:

5. Same “Tauberian” Thm. applies. G(z) :=
∫∞
1 F (x)x−z dx.

If G has anal. cont’n to Re(z) ≥ 0, then G(0) =
∫∞
1 F (x) dx

exists.

6. Bingo again! So
∫∞
1 f (x) dx exists.
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Gaussian Primes

x

Im

Re

The Gaussian integers form a lattice in the complex plane.

There are approx. 950 Gaussian primes within a radius 40.

A Gaussian integer π is prime if and only if:
1) π lies on a coord. axis and |π| prime in Z with |π| =4 3, or
2) π not on coord. axis and |π|2 is prime with |π|2 =4 1.
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