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harmonic functions
Suppose Ω is an open subset of R2 = C.

Definition: Laplacian

For u : Ω→ C, the Laplacian of u is denoted ∆u
and is the function ∆u : Ω→ C defined by

(∆u)(z) =
∂2u
∂x2 (z) +

∂2u
∂y2 (z)

for z = (x, y) = x + iy ∈ Ω.

Definition: harmonic

u is called harmonic on Ω if

(∆u)(z) = 0

for all z ∈ Ω.
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d and d-bar

Definition: ∂ and ∂

For f : Ω→ C define

∂f =
1
2

(∂f
∂x
− i

∂f
∂y

)
,

∂f =
1
2

(∂f
∂x

+ i
∂f
∂y

)
.

If f is analytic on Ω, then

(∂f )(z) = f ′(z).

Cauchy–Riemann equations

f is analytic on Ω if and only if ∂f = 0.

d d-bar = d-bar d =
1
4

Laplacian

∂∂ = ∂∂ =
1
4

∆

Proof:

∂(∂f ) =
1
4

( ∂
∂x
− i

∂

∂y

)(∂f
∂x

+ i
∂f
∂y

)
=

1
4

(∂2f
∂x2 +

∂2f
∂y2

)
=

1
4

∆f .

Similarly, ∂(∂f ) = 1
4∆f .
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u harmonic ⇐⇒ ∂u analytic

∂∂ = ∂∂ =
1
4

∆

analytic functions are harmonic

If f is analytic on Ω, then Re f , Im f ,
and f are harmonic on Ω.

Proof. Suppose f is analytic on Ω.
Thus ∂f = 0. Hence

∆f = 4∂(∂f ) = 0.

Thus f is harmonic, which implies that
Re f and Im f are harmonic.

u harmonic ⇐⇒ ∂u analytic

u is harmonic on Ω if and only if
∂u is analytic on Ω.

Proof: Suppose u : Ω→ C. Then

u is harmonic ⇐⇒ ∆u = 0

⇐⇒ ∂(∂u) = 0

⇐⇒ ∂u is analytic.
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Logarithmic Conjugation Theorem

Logarithmic Conjugation Theorem

Suppose Ω is a finitely connected domain.
Let K1, . . . ,Kn denote the bounded components
of C \ Ω. Suppose aj ∈ Kj for j = 1, . . . , n.
If u is a real-valued harmonic function on Ω,
then there exist an analytic function g on Ω and
real numbers c1, . . . , cn such that

u(z) = Re g(z)+c1 log|z−a1|+ · · ·+cn log|z−an|
for every z ∈ Ω.

Definition: finitely connected

A domain Ω ⊂ C is called finitely
connected if C \ Ω has only finitely
many bounded connected
components.
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isolated singularities of bounded harmonic functions

isolated singularities of bounded
harmonic functions

If a harmonic function is bounded near
an isolated singularity, then that
singularity is removable.

Schwarz (1872)
Picard (1923)
Lebesgue (1923)

Proof: Suppose u is bounded,
real-valued, and harmonic on

Ω = {z ∈ C : 0 < |z| < R}.

By LCT, we can assume that there exist g
analytic on Ω and c ≥ 0 such that

(∗) u(z) = Re g(z)− c log|z|.
Hence

Re g(z) = u(z) + log|z|c.

Thus
|eg(z)| = eRe g(z) = eu(z)|z|c.

Thus eg is a bounded analytic function on Ω and
hence has a removable singularity at 0. Hence
g has a removable singularity at 0 (because if g
has either an essential singularity or a pole at 0
then Re g is not bounded above near 0).

Now (∗) and boundedness of u imply that c = 0
and that u has a removable singularity at 0.
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isolated singularities of positive harmonic functions

Bôcher’s Theorem

Suppose u is harmonic and positive on
{z ∈ C : 0 < |z| < R}. Then there exist g
analytic on {z ∈ C : |z| < R} and c ≥ 0
such that

u(z) = Re g(z)− c log|z|
for all z ∈ C with 0 < |z| < R.

Proof: By LCT, there exist g analytic on
{z ∈ C : 0 < |z| < R} and c ∈ R such that

u(z) = Re g(z)− c log|z|
for all z ∈ C with 0 < |z| < R.
Let m be a positive integer greater than c.
Then

|zme−g(z)| = |zm| e−Re g(z) = e−u(z)|z|m−c,

which is bounded for z near 0.
Thus zme−g has a removable singularity at 0,
which implies that e−g has a pole or
removable singularity at 0. This implies that g
has a removable singularity at 0. This implies
that c ≥ 0.
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Liouville’s Theorem for positive harmonic function on punctured plane

positive on punctured plane

If u is positive and harmonic on R2 \ {0},
then u is constant.

Proof: The function

z 7→ u(ez)

is positive and harmonic on C and thus
is constant.

The result above fails if n > 2 because

(x1, . . . , xn) 7→ 1
‖(x1, . . . , xn)‖n−2

is positive and harmonic on Rn \ {0}.
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average of harmonic function on circles
Fix 0 ≤ R1 < R2 ≤ ∞. Let

A = {z ∈ C : R1 < |z| < R2}.

harmonic function on annulus

Suppose u is a real-valued
harmonic function on A. Then there
exist b, c ∈ R such that

1
2π

∫ 2π

0
u(reiθ) dθ = b + c log r

for all r ∈ (R1,R2).

Proof: By LCT, there exist g analytic
on A and c ∈ R such that

u
(
reiθ) = Re g

(
reiθ)+ c log r

for all r ∈ (R1,R2) and all θ ∈ [0, 2π]. Thus

1
2π

∫ 2π

0
u
(
reiθ) dθ = Re

1
2π

∫ 2π

0
g
(
reiθ) dθ + c log r

= Re
1

2πi

∫
{|z|=r}

g(z)
z

dz + c log r

= b + c log r.



23

average of harmonic function on circles
Fix 0 ≤ R1 < R2 ≤ ∞. Let

A = {z ∈ C : R1 < |z| < R2}.

harmonic function on annulus

Suppose u is a real-valued
harmonic function on A. Then there
exist b, c ∈ R such that

1
2π

∫ 2π

0
u(reiθ) dθ = b + c log r

for all r ∈ (R1,R2).

Proof: By LCT, there exist g analytic
on A and c ∈ R such that

u
(
reiθ) = Re g

(
reiθ)+ c log r

for all r ∈ (R1,R2) and all θ ∈ [0, 2π]. Thus

1
2π

∫ 2π

0
u
(
reiθ) dθ = Re

1
2π

∫ 2π

0
g
(
reiθ) dθ + c log r

= Re
1

2πi

∫
{|z|=r}

g(z)
z

dz + c log r

= b + c log r.



24

average of harmonic function on circles
Fix 0 ≤ R1 < R2 ≤ ∞. Let

A = {z ∈ C : R1 < |z| < R2}.

harmonic function on annulus

Suppose u is a real-valued
harmonic function on A. Then there
exist b, c ∈ R such that

1
2π

∫ 2π

0
u(reiθ) dθ = b + c log r

for all r ∈ (R1,R2).

Proof: By LCT, there exist g analytic
on A and c ∈ R such that

u
(
reiθ) = Re g

(
reiθ)+ c log r

for all r ∈ (R1,R2) and all θ ∈ [0, 2π].

Thus

1
2π

∫ 2π

0
u
(
reiθ) dθ = Re

1
2π

∫ 2π

0
g
(
reiθ) dθ + c log r

= Re
1

2πi

∫
{|z|=r}

g(z)
z

dz + c log r

= b + c log r.



25

average of harmonic function on circles
Fix 0 ≤ R1 < R2 ≤ ∞. Let

A = {z ∈ C : R1 < |z| < R2}.

harmonic function on annulus

Suppose u is a real-valued
harmonic function on A. Then there
exist b, c ∈ R such that

1
2π

∫ 2π

0
u(reiθ) dθ = b + c log r

for all r ∈ (R1,R2).

Proof: By LCT, there exist g analytic
on A and c ∈ R such that

u
(
reiθ) = Re g

(
reiθ)+ c log r

for all r ∈ (R1,R2) and all θ ∈ [0, 2π]. Thus

1
2π

∫ 2π

0
u
(
reiθ) dθ = Re

1
2π

∫ 2π

0
g
(
reiθ) dθ + c log r

= Re
1

2πi

∫
{|z|=r}

g(z)
z

dz + c log r

= b + c log r.



26

series representation on annulus

series representation on annulus

Suppose u is a real-valued harmonic
function on A. Then there exist c ∈ R and
{an}∞n=−∞ ⊂ C such that

u
(
reiθ) = c log r +

∞∑
n=−∞

(
anrn + a−nr−n)einθ

for all r ∈ (R1,R2) and all θ ∈ [0, 2π].

Proof: By LCT, there exist c ∈ R and g
analytic on A such that

u(z) = c log|z|+ Re g(z).

The analytic function g has a Laurent
series:

g(z) =
∞∑

n=−∞
2anzn.

Thus

u(z) = c log|z|+ g(z) + g(z)
2

Now

u
(
reiθ) = c log r +

∞∑
n=−∞

(
anrneinθ + anrne−inθ

)

= c log r +
∞∑

n=−∞

(
anrn + a−nr−n)einθ.



27

series representation on annulus

series representation on annulus

Suppose u is a real-valued harmonic
function on A. Then there exist c ∈ R and
{an}∞n=−∞ ⊂ C such that

u
(
reiθ) = c log r +

∞∑
n=−∞

(
anrn + a−nr−n)einθ

for all r ∈ (R1,R2) and all θ ∈ [0, 2π].

Proof: By LCT, there exist c ∈ R and g
analytic on A such that

u(z) = c log|z|+ Re g(z).

The analytic function g has a Laurent
series:

g(z) =
∞∑

n=−∞
2anzn.

Thus

u(z) = c log|z|+ g(z) + g(z)
2

Now

u
(
reiθ) = c log r +

∞∑
n=−∞

(
anrneinθ + anrne−inθ

)

= c log r +
∞∑

n=−∞

(
anrn + a−nr−n)einθ.



28

series representation on annulus

series representation on annulus

Suppose u is a real-valued harmonic
function on A. Then there exist c ∈ R and
{an}∞n=−∞ ⊂ C such that

u
(
reiθ) = c log r +

∞∑
n=−∞

(
anrn + a−nr−n)einθ

for all r ∈ (R1,R2) and all θ ∈ [0, 2π].

Proof: By LCT, there exist c ∈ R and g
analytic on A such that

u(z) = c log|z|+ Re g(z).

The analytic function g has a Laurent
series:

g(z) =

∞∑
n=−∞

2anzn.

Thus

u(z) = c log|z|+ g(z) + g(z)
2

Now

u
(
reiθ) = c log r +

∞∑
n=−∞

(
anrneinθ + anrne−inθ

)

= c log r +
∞∑

n=−∞

(
anrn + a−nr−n)einθ.



29

series representation on annulus

series representation on annulus

Suppose u is a real-valued harmonic
function on A. Then there exist c ∈ R and
{an}∞n=−∞ ⊂ C such that

u
(
reiθ) = c log r +

∞∑
n=−∞

(
anrn + a−nr−n)einθ

for all r ∈ (R1,R2) and all θ ∈ [0, 2π].

Proof: By LCT, there exist c ∈ R and g
analytic on A such that

u(z) = c log|z|+ Re g(z).

The analytic function g has a Laurent
series:

g(z) =

∞∑
n=−∞

2anzn.

Thus

u(z) = c log|z|+ g(z) + g(z)
2

Now

u
(
reiθ) = c log r +

∞∑
n=−∞

(
anrneinθ + anrne−inθ

)

= c log r +
∞∑

n=−∞

(
anrn + a−nr−n)einθ.



30

series representation on annulus

series representation on annulus

Suppose u is a real-valued harmonic
function on A. Then there exist c ∈ R and
{an}∞n=−∞ ⊂ C such that

u
(
reiθ) = c log r +

∞∑
n=−∞

(
anrn + a−nr−n)einθ

for all r ∈ (R1,R2) and all θ ∈ [0, 2π].

Proof: By LCT, there exist c ∈ R and g
analytic on A such that

u(z) = c log|z|+ Re g(z).

The analytic function g has a Laurent
series:

g(z) =

∞∑
n=−∞

2anzn.

Thus

u(z) = c log|z|+ g(z) + g(z)
2

Now

u
(
reiθ) = c log r +

∞∑
n=−∞

(
anrneinθ + anrne−inθ

)

= c log r +

∞∑
n=−∞

(
anrn + a−nr−n)einθ.



31

Dirichlet problem for annulus
Now assume that 0 < R1 < R2 <∞.

Dirichlet problem on annulus

If U ∈ C(∂A), then ∃ unique u ∈ C(A) such
that u is harmonic on A and u|∂A = U.

Proof: First suppose U : ∂A→ R and

U
(
R1eiθ) =

N∑
n=−N

bneinθ and U
(
R2eiθ) =

N∑
n=−N

dneinθ.

Note that

b−n = bn and d−n = dn.

For n = 1, . . . ,N, solve for an and a−n in

anR1
n + a−nR1

−n = bn

anR2
n + a−nR2

−n = dn.

Replace n by −n and take complex
conjugates to show all is well for n < 0.
For n = 0, solve for c and a0 in

c log R1 + 2a0 = b0

c log R2 + 2a0 = d0.

For arbitrary u ∈ C(∂A), use
Stone-Weierstass theorem and
maximum modulus theorem.

u
(
reiθ) = c log r +

∞∑
n=−∞

(
anrn + a−nr−n)einθ
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conjugates to show all is well for n < 0.
For n = 0, solve for c and a0 in
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Doubly Connected Mapping Theorem

Definition: doubly connected

An open connected set Ω is called doubly
connected if C \Ω has exactly one bounded
connected component.

Doubly Connected Mapping Theorem

Every doubly connected domain is
conformally equivalent to some annulus.

More precisely:

Suppose Ω is doubly connected. Then there
exist an annulus A and an injective analytic
function f : Ω→ A from Ω onto A.
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proof of Doubly Connected Mapping Theorem
Outline of proof: Let K denote the
bounded connected component of C \ Ω.
Assume 0 ∈ K.

Let u be the continuous
real-valued function on Ω such that

u = 0 on ∂K and u = 1 on ∂(Ω ∪ K)

and u is harmonic on Ω.
By the LCT, there exist g analytic on Ω
and c > 0 such that

u(z) = c log|z|+ Re g(z).

Define f analytic on Ω by

f (z) = z eg(z)/c.

Then

log|f (z)| = log|z|+Re
g(z)

c
=

u(z)
c
∈
(

0,
1
c

)
.

Let

A =
{

z ∈ C : 1 < |z| < e1/c
}
.

Thus
f : Ω→ A

is analytic (and it turns out that f is
injective and maps Ω onto A).
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proof of Doubly Connected Mapping Theorem
Fix w ∈ A. Let Γ0 and Γ1 be as in figures.

Argument principle: The number of times f
takes on the value w in the region between
Γ0 and Γ1 equals the winding number of
f (Γ0) ∪ f (Γ1) about w.
The curve f (Γ0) winds 0 times around w.
The winding number of f (Γ1) about w
equals the winding number of f (Γ1) about
0, which equals the change in 1

2πi log f (z)
as z goes once around Γ1. Now

log f (z) = log z +
g(z)

c
.

Thus the change in 1
2πi log f (z) around Γ1

equals the change in 1
2πi log z around Γ1,

which equals 1.



48

proof of Doubly Connected Mapping Theorem
Fix w ∈ A. Let Γ0 and Γ1 be as in figures.
Argument principle: The number of times f
takes on the value w in the region between
Γ0 and Γ1 equals the winding number of
f (Γ0) ∪ f (Γ1) about w.

The curve f (Γ0) winds 0 times around w.
The winding number of f (Γ1) about w
equals the winding number of f (Γ1) about
0, which equals the change in 1

2πi log f (z)
as z goes once around Γ1. Now

log f (z) = log z +
g(z)

c
.

Thus the change in 1
2πi log f (z) around Γ1

equals the change in 1
2πi log z around Γ1,

which equals 1.



49

proof of Doubly Connected Mapping Theorem
Fix w ∈ A. Let Γ0 and Γ1 be as in figures.
Argument principle: The number of times f
takes on the value w in the region between
Γ0 and Γ1 equals the winding number of
f (Γ0) ∪ f (Γ1) about w.
The curve f (Γ0) winds 0 times around w.

The winding number of f (Γ1) about w
equals the winding number of f (Γ1) about
0, which equals the change in 1

2πi log f (z)
as z goes once around Γ1. Now

log f (z) = log z +
g(z)

c
.

Thus the change in 1
2πi log f (z) around Γ1

equals the change in 1
2πi log z around Γ1,

which equals 1.



50

proof of Doubly Connected Mapping Theorem
Fix w ∈ A. Let Γ0 and Γ1 be as in figures.
Argument principle: The number of times f
takes on the value w in the region between
Γ0 and Γ1 equals the winding number of
f (Γ0) ∪ f (Γ1) about w.
The curve f (Γ0) winds 0 times around w.
The winding number of f (Γ1) about w
equals the winding number of f (Γ1) about
0, which equals the change in 1

2πi log f (z)
as z goes once around Γ1.

Now

log f (z) = log z +
g(z)

c
.

Thus the change in 1
2πi log f (z) around Γ1

equals the change in 1
2πi log z around Γ1,

which equals 1.



51

proof of Doubly Connected Mapping Theorem
Fix w ∈ A. Let Γ0 and Γ1 be as in figures.
Argument principle: The number of times f
takes on the value w in the region between
Γ0 and Γ1 equals the winding number of
f (Γ0) ∪ f (Γ1) about w.
The curve f (Γ0) winds 0 times around w.
The winding number of f (Γ1) about w
equals the winding number of f (Γ1) about
0, which equals the change in 1

2πi log f (z)
as z goes once around Γ1. Now

log f (z) = log z +
g(z)

c
.

Thus the change in 1
2πi log f (z) around Γ1

equals the change in 1
2πi log z around Γ1,

which equals 1.



52

references

Sheldon Axler, Harmonic functions from a complex analysis viewpoint,
American Mathematical Monthly 93 (1986), 246–258.
Maxime Bôcher, Singular points of functions which satisfy partial
differential equations of the elliptic type, Bulletin of the American
Mathematical Society 9 (1903) 455-465.
Henri Lebesgue, Sur les singularités des fonctions harmoniques, Comptes
Rendus Hebdomadaires des Séances de l’Académie des Sciences, Paris
176 (1923), 1097–1099.
Émile Picard, Deux théorèmes élémentaires sur les singularités des
fonctions harmoniques, Comptes Rendus Hebdomadaires des Séances de
l’Académie des Sciences, Paris 176 (1923), 933–935.
H. A. Schwarz, Zur Integration der partiellen Differential-gleichung
∂2u/∂x2 + ∂2u/∂y2, J. Reine Angew. Math. 74 (1872), 218–253.
J. L. Walsh, The approximation of harmonic functions by harmonic
polynomials and by harmonic rational functions, Bulletin of the American
Mathematical Society 35 (1929), 499–544.


