Applications of the Logarithmic Conjugation Theorem

Sheldon Axler

9 April 2021

harmonic functions

Suppose Ω is an open subset of $\mathbf{R}^2 = \mathbf{C}$.

Definition: Laplacian

For $u: \Omega \to \mathbb{C}$, the *Laplacian* of *u* is denoted Δu and is the function $\Delta u: \Omega \to \mathbb{C}$ defined by

$$(\Delta u)(z) = \frac{\partial^2 u}{\partial x^2}(z) + \frac{\partial^2 u}{\partial y^2}(z)$$

for $z = (x, y) = x + iy \in \Omega$.

Definition: harmonic

u is called *harmonic* on Ω if

$$(\Delta u)(z) = 0$$

for all $z \in \Omega$.

d and d-bar

Definition: ∂ and $\overline{\partial}$ For $f: \Omega \to \mathbf{C}$ define $\partial f = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right),$ $\overline{\partial} f = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$

If f is analytic on Ω , then

$$(\partial f)(z) = f'(z).$$

Cauchy–Riemann equations

f is analytic on Ω if and only if $\overline{\partial} f = 0$.

d and d-bar

Definition: ∂ **and** $\overline{\partial}$ For $f: \Omega \to \mathbf{C}$ define $\partial f = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right),$ $\overline{\partial} f = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$

If f is analytic on Ω , then

$$(\partial f)(z) = f'(z).$$

Cauchy–Riemann equations

f is analytic on Ω if and only if $\overline{\partial} f = 0$.

$$d d-bar = d-bar d = \frac{1}{4} Laplacian$$
$$\partial \overline{\partial} = \overline{\partial} \partial = \frac{1}{4} \Delta$$

Proof:

$$\partial(\overline{\partial}f) = \frac{1}{4} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$
$$= \frac{1}{4} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right)$$
$$= \frac{1}{4} \Delta f.$$
Similarly, $\overline{\partial}(\partial f) = \frac{1}{4} \Delta f.$

u harmonic $\iff \partial u$ analytic

$$\partial \overline{\partial} = \overline{\partial} \partial = \frac{1}{4} \Delta$$

analytic functions are harmonic

If f is analytic on Ω , then $\operatorname{Re} f$, $\operatorname{Im} f$, and f are harmonic on Ω .

Proof. Suppose f is analytic on Ω . Thus $\overline{\partial} f = 0$. Hence

$$\Delta f = 4\partial(\overline{\partial}f) = 0.$$

Thus f is harmonic, which implies that $\operatorname{Re} f$ and $\operatorname{Im} f$ are harmonic.

u harmonic $\iff \partial u$ analytic

$$\partial \overline{\partial} = \overline{\partial} \partial = \frac{1}{4} \Delta$$

analytic functions are harmonic

If f is analytic on Ω , then $\operatorname{Re} f$, $\operatorname{Im} f$, and f are harmonic on Ω .

Proof. Suppose f is analytic on Ω . Thus $\overline{\partial} f = 0$. Hence

 $\Delta f = 4\partial(\overline{\partial}f) = 0.$

Thus f is harmonic, which implies that $\operatorname{Re} f$ and $\operatorname{Im} f$ are harmonic.

u harmonic $\iff \partial u$ analytic

u is harmonic on Ω if and only if ∂u is analytic on Ω .

Proof: Suppose $u: \Omega \to \mathbb{C}$. Then u is harmonic $\iff \Delta u = 0$ $\iff \overline{\partial}(\partial u) = 0$ $\iff \partial u$ is analytic.

Logarithmic Conjugation Theorem

Definition: *finitely connected*

A domain $\Omega \subset \mathbf{C}$ is called *finitely* connected if $\mathbf{C} \setminus \Omega$ has only finitely many bounded connected components.

Logarithmic Conjugation Theorem

Logarithmic Conjugation Theorem

Suppose Ω is a finitely connected domain. Let K_1, \ldots, K_n denote the bounded components of $\mathbb{C} \setminus \Omega$. Suppose $a_j \in K_j$ for $j = 1, \ldots, n$. If *u* is a real-valued harmonic function on Ω , then there exist an analytic function *g* on Ω and real numbers c_1, \ldots, c_n such that

$$u(z) = \operatorname{Re} g(z) + c_1 \log |z - a_1| + \dots + c_n \log |z - a_n|$$

for every $z \in \Omega$.

Definition: *finitely connected*

A domain $\Omega \subset \mathbf{C}$ is called *finitely* connected if $\mathbf{C} \setminus \Omega$ has only finitely many bounded connected components.

isolated singularities of bounded harmonic functions

If a harmonic function is bounded near an isolated singularity, then that singularity is removable.

- Schwarz (1872)
- Picard (1923)
- Lebesgue (1923)

• 0

R

isolated singularities of bounded harmonic functions

If a harmonic function is bounded near an isolated singularity, then that singularity is removable.

- Schwarz (1872)
- Picard (1923)
- Lebesgue (1923)

Proof: Suppose *u* is bounded, real-valued, and harmonic on

$$\Omega = \{ z \in \mathbf{C} : 0 < |z| < \mathbf{R} \}.$$

(*)

R

• 0

isolated singularities of bounded harmonic functions

If a harmonic function is bounded near an isolated singularity, then that singularity is removable.

- Schwarz (1872)
- Picard (1923)
- Lebesgue (1923)

Proof: Suppose *u* is bounded, real-valued, and harmonic on

$$\Omega = \{ z \in \mathbf{C} : 0 < |z| < \mathbf{R} \}.$$

By LCT, we can assume that there exist g analytic on Ω and $c \ge 0$ such that

$$u(z) = \operatorname{Re} g(z) - c \log|z|.$$

isolated singularities of bounded harmonic functions

If a harmonic function is bounded near an isolated singularity, then that singularity is removable.

- Schwarz (1872)
- Picard (1923)
- Lebesgue (1923)

Proof: Suppose *u* is bounded, real-valued, and harmonic on

$$\Omega = \{ z \in \mathbf{C} : 0 < |z| < \mathbf{R} \}.$$

By LCT, we can assume that there exist g analytic on Ω and $c \ge 0$ such that

$$u(z) = \operatorname{Re} g(z) - c \log|z|.$$

Hence

(*)

$$\operatorname{Re} g(z) = u(z) + \log |z|^c.$$

Thus

R

• 0

$$|e^{g(z)}| = e^{\operatorname{Re} g(z)} = e^{u(z)}|z|^c.$$

isolated singularities of bounded harmonic functions

If a harmonic function is bounded near an isolated singularity, then that singularity is removable.

- Schwarz (1872)
- Picard (1923)
- Lebesgue (1923)

Proof: Suppose *u* is bounded, real-valued, and harmonic on

$$\Omega = \{ z \in \mathbf{C} : 0 < |z| < \mathbf{R} \}.$$

By LCT, we can assume that there exist g analytic on Ω and $c \ge 0$ such that

$$u(z) = \operatorname{Re} g(z) - c \log|z|.$$

Hence

(*)

$$\operatorname{Re} g(z) = u(z) + \log |z|^c.$$

Thus

• 0

Ω

$$|e^{g(z)}| = e^{\operatorname{Re} g(z)} = e^{u(z)}|z|^c.$$

^{*R*} Thus e^g is a bounded analytic function on Ω and hence has a removable singularity at 0. Hence *g* has a removable singularity at 0 (because if *g* has either an essential singularity or a pole at 0 then Re *g* is not bounded above near 0).

isolated singularities of bounded harmonic functions

If a harmonic function is bounded near an isolated singularity, then that singularity is removable.

- Schwarz (1872)
- Picard (1923)
- Lebesgue (1923)

Proof: Suppose *u* is bounded, real-valued, and harmonic on

$$\Omega = \{ z \in \mathbf{C} : 0 < |z| < \mathbf{R} \}.$$

By LCT, we can assume that there exist g analytic on Ω and $c \ge 0$ such that

$$u(z) = \operatorname{Re} g(z) - c \log|z|.$$

Hence

(*)

$$\operatorname{Re} g(z) = u(z) + \log |z|^c.$$

Thus

• 0

Ω

$$|e^{g(z)}| = e^{\operatorname{Re} g(z)} = e^{u(z)}|z|^c.$$

^{*R*} Thus e^g is a bounded analytic function on Ω and hence has a removable singularity at 0. Hence *g* has a removable singularity at 0 (because if *g* has either an essential singularity or a pole at 0 then Re *g* is not bounded above near 0). Now (*) and boundedness of *u* imply that c = 0and that *u* has a removable singularity at 0.

Bôcher's Theorem

Suppose *u* is harmonic and positive on $\{z \in \mathbf{C} : 0 < |z| < R\}$. Then there exist *g* analytic on $\{z \in \mathbf{C} : |z| < R\}$ and $c \ge 0$ such that

$$u(z) = \operatorname{Re} g(z) - c \log|z|$$

for all $z \in \mathbf{C}$ with 0 < |z| < R.

Bôcher's Theorem

Suppose *u* is harmonic and positive on $\{z \in \mathbf{C} : 0 < |z| < R\}$. Then there exist *g* analytic on $\{z \in \mathbf{C} : |z| < R\}$ and $c \ge 0$ such that

$$u(z) = \operatorname{Re} g(z) - c \log|z|$$

for all $z \in \mathbf{C}$ with 0 < |z| < R.

Proof: By LCT, there exist *g* analytic on $\{z \in \mathbf{C} : 0 < |z| < R\}$ and $c \in \mathbf{R}$ such that $u(z) = \operatorname{Re} g(z) - c \log |z|$ for all $z \in \mathbf{C}$ with 0 < |z| < R.

Bôcher's Theorem

Suppose *u* is harmonic and positive on $\{z \in \mathbf{C} : 0 < |z| < R\}$. Then there exist *g* analytic on $\{z \in \mathbf{C} : |z| < R\}$ and $c \ge 0$ such that

$$u(z) = \operatorname{Re} g(z) - c \log|z|$$

for all $z \in \mathbf{C}$ with 0 < |z| < R.

Proof: By LCT, there exist *g* analytic on $\{z \in \mathbf{C} : 0 < |z| < R\}$ and $c \in \mathbf{R}$ such that $u(z) = \operatorname{Re} g(z) - c \log|z|$

for all $z \in \mathbf{C}$ with 0 < |z| < R.

Let m be a positive integer greater than c. Then

$$|z^{m}e^{-g(z)}| = |z^{m}| e^{-\operatorname{Re}g(z)} = e^{-u(z)}|z|^{m-c},$$

which is bounded for z near 0.

Bôcher's Theorem

Suppose *u* is harmonic and positive on $\{z \in \mathbf{C} : 0 < |z| < R\}$. Then there exist *g* analytic on $\{z \in \mathbf{C} : |z| < R\}$ and $c \ge 0$ such that

$$u(z) = \operatorname{Re} g(z) - c \log|z|$$

for all $z \in \mathbf{C}$ with 0 < |z| < R.

Proof: By LCT, there exist *g* analytic on $\{z \in \mathbf{C} : 0 < |z| < R\}$ and $c \in \mathbf{R}$ such that $u(z) = \operatorname{Re} g(z) - c \log|z|$

for all $z \in \mathbf{C}$ with 0 < |z| < R.

Let m be a positive integer greater than c. Then

$$|z^{m}e^{-g(z)}| = |z^{m}| e^{-\operatorname{Re}g(z)} = e^{-u(z)}|z|^{m-c},$$

which is bounded for z near 0.

Thus $z^m e^{-g}$ has a removable singularity at 0, which implies that e^{-g} has a pole or removable singularity at 0. This implies that g has a removable singularity at 0. This implies that $c \ge 0$.

Liouville's Theorem for positive harmonic function on punctured plane

positive on punctured plane

If *u* is positive and harmonic on $\mathbb{R}^2 \setminus \{0\}$, then *u* is constant.

Liouville's Theorem for positive harmonic function on punctured plane

positive on punctured plane

If *u* is positive and harmonic on $\mathbb{R}^2 \setminus \{0\}$, then *u* is constant.

Proof: The function

 $z \mapsto u(e^z)$

is positive and harmonic on ${\bf C}$ and thus is constant. \blacksquare

Liouville's Theorem for positive harmonic function on punctured plane

positive on punctured plane

If *u* is positive and harmonic on $\mathbb{R}^2 \setminus \{0\}$, then *u* is constant.

Proof: The function

 $z\mapsto u(e^z)$

is positive and harmonic on ${\bf C}$ and thus is constant. \blacksquare

The result above fails if n > 2 because $(x_1, \dots, x_n) \mapsto \frac{1}{\|(x_1, \dots, x_n)\|^{n-2}}$ is positive and harmonic on $\mathbb{R}^n \setminus \{0\}$.

Fix $0 \le R_1 < R_2 \le \infty$. Let

$$\mathcal{A} = \{ z \in \mathbf{C} : R_1 < |z| < R_2 \}.$$

Fix $0 \le R_1 < R_2 \le \infty$. Let

 $\mathcal{A} = \{ z \in \mathbf{C} : \mathbf{R}_1 < |z| < \mathbf{R}_2 \}.$

harmonic function on annulus

Suppose *u* is a real-valued harmonic function on A. Then there exist $b, c \in \mathbf{R}$ such that

$$rac{1}{2\pi}\int_{0}^{2\pi}u(re^{i heta})\,d heta=b+c\log r$$
 for all $r\in(R_1,R_2).$

Fix $0 \le R_1 < R_2 \le \infty$. Let

 $\mathcal{A} = \{ z \in \mathbf{C} : R_1 < |z| < R_2 \}.$

harmonic function on annulus

Suppose *u* is a real-valued harmonic function on A. Then there exist $b, c \in \mathbf{R}$ such that

$$rac{1}{2\pi}\int_{0}^{2\pi}u(re^{i heta})\,d heta=b+c\log r$$
 for all $r\in(R_1,R_2).$

Proof: By LCT, there exist *g* analytic on A and $c \in \mathbf{R}$ such that

$$u(re^{i\theta}) = \operatorname{Re}g(re^{i\theta}) + c\log r$$

for all $r \in (R_1, R_2)$ and all $\theta \in [0, 2\pi]$.

Fix $0 \le R_1 < R_2 \le \infty$. Let

 $\mathcal{A} = \{ z \in \mathbf{C} : R_1 < |z| < R_2 \}.$

harmonic function on annulus

Suppose *u* is a real-valued harmonic function on A. Then there exist $b, c \in \mathbf{R}$ such that

$$rac{1}{2\pi}\int_{0}^{2\pi}u(re^{i heta})\,d heta=b+c\log r$$
 for all $r\in(R_1,R_2).$

Proof: By LCT, there exist g analytic on A and $c \in \mathbf{R}$ such that

$$u(re^{i\theta}) = \operatorname{Re}g(re^{i\theta}) + c\log r$$

or all
$$r \in (R_1, R_2)$$
 and all $\theta \in [0, 2\pi]$. Thus
 $\frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta = \operatorname{Re} \frac{1}{2\pi} \int_0^{2\pi} g(re^{i\theta}) d\theta + c \log r$
 $= \operatorname{Re} \frac{1}{2\pi i} \int_{\{|z|=r\}} \frac{g(z)}{z} dz + c \log r$
 $= b + c \log r$.

series representation on annulus

Suppose *u* is a real-valued harmonic function on \mathcal{A} . Then there exist $c \in \mathbf{R}$ and $\{a_n\}_{n=-\infty}^{\infty} \subset \mathbf{C}$ such that $u(re^{i\theta}) = c \log r + \sum_{n=-\infty}^{\infty} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}$ for all $r \in (R_1, R_2)$ and all $\theta \in [0, 2\pi]$.

series representation on annulus

Suppose *u* is a real-valued harmonic function on \mathcal{A} . Then there exist $c \in \mathbf{R}$ and $\{a_n\}_{n=-\infty}^{\infty} \subset \mathbf{C}$ such that $u(re^{i\theta}) = c \log r + \sum_{n=-\infty}^{\infty} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}$ for all $r \in (R_1, R_2)$ and all $\theta \in [0, 2\pi]$.

Proof: By LCT, there exist $c \in \mathbf{R}$ and g analytic on \mathcal{A} such that

 $u(z) = c \log|z| + \operatorname{Re} g(z).$

• 0 R1

 R_2

series representation on annulus

Suppose *u* is a real-valued harmonic function on \mathcal{A} . Then there exist $c \in \mathbf{R}$ and $\{a_n\}_{n=-\infty}^{\infty} \subset \mathbf{C}$ such that $u(re^{i\theta}) = c \log r + \sum_{n=-\infty}^{\infty} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}$ for all $r \in (R_1, R_2)$ and all $\theta \in [0, 2\pi]$.

Proof: By LCT, there exist $c \in \mathbf{R}$ and g analytic on \mathcal{A} such that

$$u(z) = c \log|z| + \operatorname{Re} g(z).$$

The analytic function g has a Laurent series:

$$g(z)=\sum_{n=-\infty}^{\infty}2a_nz^n.$$

• 0 R1

 R_2

series representation on annulus

Suppose *u* is a real-valued harmonic
function on
$$\mathcal{A}$$
. Then there exist $c \in \mathbf{R}$ and
 $\{a_n\}_{n=-\infty}^{\infty} \subset \mathbf{C}$ such that
 $u(re^{i\theta}) = c \log r + \sum_{n=-\infty}^{\infty} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}$
for all $r \in (R_1, R_2)$ and all $\theta \in [0, 2\pi]$.

$$g(z) = \sum_{n=-\infty}^{\infty} 2a_n z^n.$$

Thus

$$u(z) = c \log|z| + \frac{g(z) + \overline{g(z)}}{2}$$

Proof: By LCT, there exist $c \in \mathbf{R}$ and g analytic on \mathcal{A} such that

$$u(z) = c \log|z| + \operatorname{Re} g(z).$$

The analytic function g has a Laurent series:

series representation on annulus

Suppose *u* is a real-valued harmonic function on \mathcal{A} . Then there exist $c \in \mathbf{R}$ and $\{a_n\}_{n=-\infty}^{\infty} \subset \mathbf{C}$ such that $u(re^{i\theta}) = c \log r + \sum_{n=-\infty}^{\infty} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}$ for all $r \in (R_1, R_2)$ and all $\theta \in [0, 2\pi]$.

Proof: By LCT, there exist $c \in \mathbf{R}$ and g analytic on \mathcal{A} such that

$$u(z) = c \log|z| + \operatorname{Re} g(z).$$

The analytic function g has a Laurent series:

$$g(z) = \sum_{n=-\infty}^{\infty} 2a_n z^n.$$

Thus

$$u(z) = c \log|z| + \frac{g(z) + \overline{g(z)}}{2}$$

Now

• 0 R1

$$u(re^{i\theta}) = c\log r + \sum_{n=-\infty}^{\infty} \left(a_n r^n e^{in\theta} + \overline{a_n} r^n e^{-in\theta}\right)$$

$$= c \log r + \sum_{n=-\infty}^{\infty} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}.$$

Now assume that $0 < R_1 < R_2 < \infty$.

Dirichlet problem on annulus

If $U \in C(\partial A)$, then \exists unique $u \in C(\overline{A})$ such that *u* is harmonic on A and $u|_{\partial A} = U$.

Now assume that $0 < R_1 < R_2 < \infty$.

Dirichlet problem on annulus

If $U \in C(\partial A)$, then \exists unique $u \in C(\overline{A})$ such that *u* is harmonic on A and $u|_{\partial A} = U$.

Proof: First suppose $U: \partial A \to \mathbf{R}$ and

$$U(R_1e^{i\theta}) = \sum_{n=-N}^N b_n e^{in\theta}$$
 and $U(R_2e^{i\theta}) = \sum_{n=-N}^N d_n e^{in\theta}.$

Note that

 $b_{-n} = \overline{b_n}$ and $d_{-n} = \overline{d_n}$.

Now assume that $0 < R_1 < R_2 < \infty$.

Dirichlet problem on annulus

If $U \in C(\partial A)$, then \exists unique $u \in C(\overline{A})$ such that *u* is harmonic on A and $u|_{\partial A} = U$.

Proof: First suppose $U: \partial A \to \mathbf{R}$ and

$$U(R_1e^{i\theta}) = \sum_{n=-N}^N b_n e^{in\theta}$$
 and $U(R_2e^{i\theta}) = \sum_{n=-N}^N d_n e^{in\theta}$

Note that

$$b_{-n} = \overline{b_n}$$
 and $d_{-n} = \overline{d_n}$.

$$u(re^{i\theta}) = c\log r + \sum_{n=-\infty}^{\infty} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}$$

Now assume that $0 < R_1 < R_2 < \infty$.

Dirichlet problem on annulus

If $U \in C(\partial A)$, then \exists unique $u \in C(\overline{A})$ such that *u* is harmonic on A and $u|_{\partial A} = U$.

Proof: First suppose $U: \partial A \to \mathbf{R}$ and

$$U(R_1e^{i heta}) = \sum_{n=-N}^N b_n e^{in heta}$$
 and $U(R_2e^{i heta}) = \sum_{n=-N}^N d_n e^{in heta}$

Note that

$$b_{-n} = \overline{b_n}$$
 and $d_{-n} = \overline{d_n}$.

For n = 1, ..., N, solve for a_n and $\overline{a_{-n}}$ in

$$u(re^{i\theta}) = c\log r + \sum_{n=-\infty}^{\infty} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}$$

$$a_n R_1^n + \overline{a_{-n}} R_1^{-n} = b_n$$
$$a_n R_2^n + \overline{a_{-n}} R_2^{-n} = d_n.$$

Now assume that $0 < R_1 < R_2 < \infty$.

Dirichlet problem on annulus

If $U \in C(\partial A)$, then \exists unique $u \in C(\overline{A})$ such that u is harmonic on A and $u|_{\partial A} = U$.

$$a_n R_1^n + \overline{a_{-n}} R_1^{-n} = b_n$$
$$a_n R_2^n + \overline{a_{-n}} R_2^{-n} = d_n.$$

Replace *n* by -n and take complex conjugates to show all is well for n < 0.

Proof: First suppose $U: \partial A \to \mathbf{R}$ and

$$U(R_1e^{i\theta}) = \sum_{n=-N}^N b_n e^{in\theta}$$
 and $U(R_2e^{i\theta}) = \sum_{n=-N}^N d_n e^{in\theta}.$

Note that

$$b_{-n} = \overline{b_n}$$
 and $d_{-n} = \overline{d_n}$.

For n = 1, ..., N, solve for a_n and $\overline{a_{-n}}$ in

$$u(re^{i\theta}) = c\log r + \sum_{n=-\infty}^{\infty} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}$$

Now assume that $0 < R_1 < R_2 < \infty$.

Dirichlet problem on annulus

If $U \in C(\partial A)$, then \exists unique $u \in C(\overline{A})$ such that u is harmonic on A and $u|_{\partial A} = U$.

Proof: First suppose $U: \partial A \to \mathbf{R}$ and

$$U(R_1e^{i\theta}) = \sum_{n=-N}^{N} b_n e^{in\theta}$$
 and $U(R_2e^{i\theta}) = \sum_{n=-N}^{N} d_n e^{in\theta}$

$$a_n R_1^{n} + \overline{a_{-n}} R_1^{-n} = b_n$$
$$a_n R_2^{n} + \overline{a_{-n}} R_2^{-n} = d_n.$$

Replace *n* by -n and take complex conjugates to show all is well for n < 0. For n = 0, solve for *c* and a_0 in

 $c\log R_1 + 2a_0 = b_0$ $c\log R_2 + 2a_0 = d_0.$

Note that

$$b_{-n} = \overline{b_n}$$
 and $d_{-n} = \overline{d_n}$.

For n = 1, ..., N, solve for a_n and $\overline{a_{-n}}$ in

$$u(re^{i\theta}) = c\log r + \sum_{n=-\infty}^{\infty} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}$$

Now assume that $0 < R_1 < R_2 < \infty$.

Dirichlet problem on annulus

If $U \in C(\partial A)$, then \exists unique $u \in C(\overline{A})$ such that u is harmonic on A and $u|_{\partial A} = U$.

Proof: First suppose $U: \partial A \to \mathbf{R}$ and

$$U(R_1e^{i\theta}) = \sum_{n=-N}^N b_n e^{in\theta}$$
 and $U(R_2e^{i\theta}) = \sum_{n=-N}^N d_n e^{in\theta}$

Note that

$$b_{-n} = \overline{b_n}$$
 and $d_{-n} = \overline{d_n}$.

For n = 1, ..., N, solve for a_n and $\overline{a_{-n}}$ in

$$a_n R_1^{\ n} + \overline{a_{-n}} R_1^{\ -n} = b_n$$
$$a_n R_2^{\ n} + \overline{a_{-n}} R_2^{\ -n} = d_n.$$

Replace *n* by -n and take complex conjugates to show all is well for n < 0. For n = 0, solve for *c* and a_0 in

$$c \log R_1 + 2a_0 = b_0$$

 $c \log R_2 + 2a_0 = d_0.$

For arbitrary $u \in C(\partial A)$, use Stone-Weierstass theorem and maximum modulus theorem.

$$u(re^{i\theta}) = c\log r + \sum_{n=-\infty}^{\infty} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}$$

Doubly Connected Mapping Theorem

Definition: doubly connected

An open connected set Ω is called *doubly connected* if $\mathbf{C} \setminus \Omega$ has exactly one bounded connected component.

Doubly Connected Mapping Theorem

Definition: doubly connected

An open connected set Ω is called *doubly connected* if $\mathbf{C} \setminus \Omega$ has exactly one bounded connected component.

Doubly Connected Mapping Theorem

Every doubly connected domain is conformally equivalent to some annulus.

Doubly Connected Mapping Theorem

Definition: doubly connected

An open connected set Ω is called *doubly connected* if $\mathbb{C} \setminus \Omega$ has exactly one bounded connected component.

Doubly Connected Mapping Theorem

Every doubly connected domain is conformally equivalent to some annulus.

More precisely:

Suppose Ω is doubly connected. Then there exist an annulus \mathcal{A} and an injective analytic function $f: \Omega \to \mathcal{A}$ from Ω onto \mathcal{A} .

Outline of proof: Let *K* denote the bounded connected component of $\mathbf{C} \setminus \Omega$. Assume $0 \in K$.

Outline of proof: Let *K* denote the bounded connected component of $\mathbb{C} \setminus \Omega$. Assume $0 \in K$. Let *u* be the continuous real-valued function on $\overline{\Omega}$ such that

u = 0 on ∂K and u = 1 on $\partial(\Omega \cup K)$

and u is harmonic on Ω .

Outline of proof: Let *K* denote the bounded connected component of $\mathbb{C} \setminus \Omega$. Assume $0 \in K$. Let *u* be the continuous real-valued function on $\overline{\Omega}$ such that

u = 0 on ∂K and u = 1 on $\partial(\Omega \cup K)$

and *u* is harmonic on Ω . By the LCT, there exist *g* analytic on Ω and c > 0 such that

 $u(z) = c \log|z| + \operatorname{Re} g(z).$

Outline of proof: Let *K* denote the bounded connected component of $\mathbb{C} \setminus \Omega$. Assume $0 \in K$. Let *u* be the continuous real-valued function on $\overline{\Omega}$ such that

u = 0 on ∂K and u = 1 on $\partial(\Omega \cup K)$

and *u* is harmonic on Ω . By the LCT, there exist *g* analytic on Ω and c > 0 such that

 $u(z) = c \log|z| + \operatorname{Re} g(z).$

Define f analytic on Ω by

$$f(z) = z \, e^{g(z)/c}.$$

Outline of proof: Let *K* denote the bounded connected component of $\mathbb{C} \setminus \Omega$. Assume $0 \in K$. Let *u* be the continuous real-valued function on $\overline{\Omega}$ such that

u = 0 on ∂K and u = 1 on $\partial(\Omega \cup K)$

and u is harmonic on Ω . By the LCT, there exist g analytic on Ω and c > 0 such that

$$u(z) = c \log|z| + \operatorname{Re} g(z).$$

Define f analytic on Ω by

$$f(z) = z \, e^{g(z)/c}.$$

Then

$$\log|f(z)| = \log|z| + \operatorname{Re}\frac{g(z)}{c} = \frac{u(z)}{c} \in \left(0, \frac{1}{c}\right).$$

Outline of proof: Let *K* denote the bounded connected component of $\mathbb{C} \setminus \Omega$. Assume $0 \in K$. Let *u* be the continuous real-valued function on $\overline{\Omega}$ such that

u = 0 on ∂K and u = 1 on $\partial(\Omega \cup K)$

and u is harmonic on Ω . By the LCT, there exist g analytic on Ω and c > 0 such that

$$u(z) = c \log|z| + \operatorname{Re} g(z).$$

Define f analytic on Ω by

$$f(z) = z \, e^{g(z)/c}.$$

Then

$$\log|f(z)| = \log|z| + \operatorname{Re}\frac{g(z)}{c} = \frac{u(z)}{c} \in \left(0, \frac{1}{c}\right).$$

is analytic (and it turns out that f is injective and maps Ω onto \mathcal{A}).

Fix $w \in A$. Let Γ_0 and Γ_1 be as in figures.

Fix $w \in A$. Let Γ_0 and Γ_1 be as in figures. Argument principle: The number of times f takes on the value w in the region between Γ_0 and Γ_1 equals the winding number of $f(\Gamma_0) \cup f(\Gamma_1)$ about w.

Fix $w \in A$. Let Γ_0 and Γ_1 be as in figures. Argument principle: The number of times f takes on the value w in the region between Γ_0 and Γ_1 equals the winding number of $f(\Gamma_0) \cup f(\Gamma_1)$ about w.

The curve $f(\Gamma_0)$ winds 0 times around w.

Fix $w \in A$. Let Γ_0 and Γ_1 be as in figures. Argument principle: The number of times f takes on the value w in the region between Γ_0 and Γ_1 equals the winding number of $f(\Gamma_0) \cup f(\Gamma_1)$ about w.

The curve $f(\Gamma_0)$ winds 0 times around w. The winding number of $f(\Gamma_1)$ about wequals the winding number of $f(\Gamma_1)$ about 0, which equals the change in $\frac{1}{2\pi i} \log f(z)$ as z goes once around Γ_1 .

Fix $w \in A$. Let Γ_0 and Γ_1 be as in figures. Argument principle: The number of times f takes on the value w in the region between Γ_0 and Γ_1 equals the winding number of $f(\Gamma_0) \cup f(\Gamma_1)$ about w.

The curve $f(\Gamma_0)$ winds 0 times around w. The winding number of $f(\Gamma_1)$ about wequals the winding number of $f(\Gamma_1)$ about 0, which equals the change in $\frac{1}{2\pi i} \log f(z)$ as z goes once around Γ_1 . Now

$$\log f(z) = \log z + \frac{g(z)}{c}.$$

Thus the change in $\frac{1}{2\pi i} \log f(z)$ around Γ_1 equals the change in $\frac{1}{2\pi i} \log z$ around Γ_1 , which equals 1.

references

- Sheldon Axler, Harmonic functions from a complex analysis viewpoint, *American Mathematical Monthly* 93 (1986), 246–258.
- Maxime Bôcher, Singular points of functions which satisfy partial differential equations of the elliptic type, *Bulletin of the American Mathematical Society* 9 (1903) 455-465.
- Henri Lebesgue, Sur les singularités des fonctions harmoniques, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris 176 (1923), 1097–1099.
- Émile Picard, Deux théorèmes élémentaires sur les singularités des fonctions harmoniques, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris 176 (1923), 933–935.
- H. A. Schwarz, Zur Integration der partiellen Differential-gleichung $\partial^2 u/\partial x^2 + \partial^2 u/\partial y^2$, *J. Reine Angew. Math.* 74 (1872), 218–253.
- J. L. Walsh, The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions, *Bulletin of the American Mathematical Society* 35 (1929), 499–544.