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harmonic functions

Suppose (2 is an open subset of R* = C.

(‘Definition: Laplacian AR
For u: Q2 — C, the Laplacian of u is denoted Au
and is the function Au: Q — C defined by :
@) =250+ 2560 :
\forzz(x,y):x—kiyEQ. y ‘
(Definition: harmonic N
u is called harmonic on (2 if WPOsTES
(Au)(2) = 0 o AASE
dorallzeﬂ. ) -




d and d-bar

(Definition: o and O h
For f: Q — C define
of of
of = (a - a—y>
_ of .of
o = (8}6 i 8_y>
. Y,

If f is analytic on €2, then

(9f)(2) =f(2)-

( Cauchy-Riemann equations

bf is analytic on € if and only if 9f = O.J
.




d and d-bar

~

(Definition: o and O
For f: Q — C define

of = (gi—gf;) L 00 =30 = ;A J

(d d-bar = d-bar d = % Laplacian }

of | .of Proof:
af = ( +iZ).
ox Oy —_— o of  .of
N . . d ) = (& B 87)/) (Bx i ﬁy)
If f is analytic on €2, then ) )
(@)) =F(). - (52+55)
Cauchy-Riemann equations 1

hf is analytic on Q if and only if Of = O.J Similarly, 9(af) = 1A7.




u harmonic <= Ju analytic

—_ 1
88:88:ZA

( analytic functions are harmonicw

tff is analytic on €, then Ref, Imf, J

and f are harmonic on .

Proof. Suppose f is analytic on €.
Thus of = 0. Hence

Af = 49(0f) = 0.

Thus f is harmonic, which implies that
Ref and Imf are harmonic. il



u harmonic <= Ju analytic

—_ 1
88—88:ZA

( analytic functions are harmonicw ( u harmonic < Ou analytic w

tff is analytic on €, then Ref, Imf, J Lu is harmonic on Q if and only if J

and f are harmonic on (. Ou is analytic on €.

Proof. Suppose f is analytic on (. Proof: Suppose u: Q@ — C. Then
Thus 9f = 0. Hence u is harmonic <= Au=0

Af = 49(9f) = 0. — 9(0u) =0
Thus f is harmonic, which implies that <= Ouis analytic. i1

Ref and Imf are harmonic. il
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(Definition: finitely connected

A domain Q c C is called finitely
connected if C \ 2 has only finitely
many bounded connected

components.
\ comp

\.




Logarithmic Conjugation Theorem

\V

(Logarithmic Conjugation Theorem
4 v
Suppose 2 is a finitely connected domain. / /
Let Ki,..., K, denote the bounded components /// %/é
of C\ Q. Suppose g; € Kjforj=1,...,n.
If u is a real-valued harmonic function on €,

then there exist an analytic function g on 2 and
real numbers cy, . .., c, such that

u(z) = Reg(z) +c1 loglz—ar|++-+culogl—an| | ( Definition: finitely connected

Q‘or every z € (.

/| Adomain Q c C is called finitely
connected if C \ 2 has only finitely
many bounded connected

components.
\ comp

J




isolated singularities of bounded harmonic functions

(isolated singularities of boundecp

harmonic functions

If a harmonic function is bounded near
an isolated singularity, then that

singularity is removable.
kl gularity i V. )

@ Schwarz (1872)
@ Picard (1923) ‘ )
@ Lebesgue (1923) 0




isolated singularities of bounded harmonic functions

(isolated singularities of boundecp

harmonic functions

If a harmonic function is bounded near
an isolated singularity, then that

\singularity is removable.

@ Schwarz (1872)
@ Picard (1923)
@ Lebesgue (1923) 0

Proof: Suppose u is bounded,
real-valued, and harmonic on

Q={z€C:0<|z] <R}.




isolated singularities of bounded harmonic functions

(isolated singularities of boundecp

harmonic functions

If a harmonic function is bounded near
an isolated singularity, then that

\singularity is removable.

@ Schwarz (1872)
@ Picard (1923)
@ Lebesgue (1923) 0

Proof: Suppose u is bounded,
real-valued, and harmonic on

Q={zeC:0<|z] <R}

By LCT, we can assume that there exist g
analytic on Q and ¢ > 0 such that

() u(z) = Reg(z) — clogle|.



isolated singularities of bounded harmonic functions

(isolated singularities of bounded ) BY LCT, we can assume that there exist ¢
harmonic functions analytic on Q and ¢ > 0 such that
& e nakon @ heuses near | Ik u(z) = Reg(z) —cloglz].
an isolated singularity, then that Hence ‘
\singularity is removable. Re g(z) = u(z) + log|z|".
Thus
@ Schwarz (1872) e8| = Res(@) = ou(@)|z)c.
@ Picard (1923) . )
@ Lebesgue (1923) 0

Proof: Suppose u is bounded,
real-valued, and harmonic on

Q={zeC:0<|z] <R}



isolated singularities of bounded harmonic functions

(isolated singularities of bounded) BY LCT, we can assume that there exist g

harmonic functions analytic on Q and ¢ > 0 such that

=R —cl .

If a harmonic function is bounded near *) u(z) eg(z) —clogle]

an isolated singularity, then that Hence .
\singularity is removable. Re g(z) = u(z) + log|z|".

Thus

@ Schwarz (1872) e8| = Res(@) = ou(@)|z)c.
@ Picard (1923) . . Thus ¢ is a bounded analytic function on  and
® Lebesgue (1923) 0 hence has a removable singularity at 0. Hence

g has a removable singularity at 0 (because if g
has either an essential singularity or a pole at 0
then Re g is not bounded above near 0).

Proof: Suppose u is bounded,
real-valued, and harmonic on

Q={zeC:0<|z] <R}



isolated singularities of bounded harmonic functions

(isolated singularities of boundecp

harmonic functions

If a harmonic function is bounded near
an isolated singularity, then that

\singularity is removable.

@ Schwarz (1872)
@ Picard (1923)
@ Lebesgue (1923) 0

Proof: Suppose u is bounded,
real-valued, and harmonic on

Q={zeC:0<|z] <R}

By LCT, we can assume that there exist g
analytic on Q and ¢ > 0 such that

(*) u(z) = Reg(z) — cloglz].
Hence
Reg(z) = u(z) + log|z|".

Thus
|eg(Z)’ — oRes(d) — eu(Z)‘Z|C'

z Thus e8 is a bounded analytic function on  and
hence has a removable singularity at 0. Hence
g has a removable singularity at 0 (because if g
has either an essential singularity or a pole at 0
then Re g is not bounded above near 0).

Now (x) and boundedness of u imply that ¢ = 0
and that « has a removable singularity at 0. B



isolated singularities of positive harmonic functions

(Bécher’s Theorem A

Suppose u is harmonic and positive on
{z € C:0 < |z] < R}. Then there exist g
analyticon {z€ C: |zl <R}andc¢ >0
such that

u(z) = Reg(z) — cloglz]

dor allze Cwith0 < [z] <R.




isolated singularities of positive harmonic functions

(Bécher’s Theorem A

Suppose u is harmonic and positive on
{z € C:0 < |z] < R}. Then there exist g
analyticon {z€ C: |zl <R}andc¢ >0
such that

u(z) = Reg(z) — cloglz]

dor allze Cwith0 < [z] <R.

Proof: By LCT, there exist g analytic on
{z€ C:0< |z] <R} and ¢ € R such that

u(z) = Reg(z) — clogle]

forall z € C with 0 < |z| < R.




isolated singularities of positive harmonic functions

(Bécher’s Theorem A

Suppose u is harmonic and positive on
{z € C:0 < |z] < R}. Then there exist g
analyticon {z€ C: |zl <R}andc¢ >0
such that

u(z) = Reg(z) — cloglz]

CorallzeCwithO<|z|<R. )

Proof: By LCT, there exist g analytic on
{z€ C:0< |z] <R} and c € R such that

u(z) = Reg(z) — cloglz]
forallz € Cwith0 < |z] <R.

Let m be a positive integer greater than c.
Then

|Zme—g(z)‘ _ ‘Zm| e~ Reg(z) — e—u(z)‘z|m—c.

which is bounded for z near 0.




isolated singularities of positive harmonic functions

"\ Proof: By LCT, there exist g analytic on

(Bécher’s Theorem
{z€ C:0< |z] <R} and c € R such that

Suppose u is harmonic and positive on
{z € C:0 < |z] < R}. Then there exist g _
analyticon {z€ C: |z) <R}andc >0 | forallze Cwith0 <z <R.

such that Let m be a positive integer greater than c.
Then

[2"e 8| = || = Re8E) = ¢ g,

u(z) = Reg(z) — clogle]

u(z) = Reg(z) — cloglz]

forallz € Cwith0 < |z] <R.
- which is bounded for z near 0.
Thus 7"e~8 has a removable singularity at 0,
which implies that ¢~ has a pole or
.0 R removable singularity at 0. This implies that g
Q has a removable singularity at 0. This implies
thatc > 0. i




Liouville’s Theorem for positive harmonic function on punctured plane

( positive on punctured plane w

tf u is positive and harmonic on R? \ {O}J

then u is constant.




Liouville’s Theorem for positive harmonic function on punctured plane

( positive on punctured plane w
tf u is positive and harmonic on R? \ {O}J

then u is constant.

Proof: The function

z > u(e)

is positive and harmonic on C and thus
is constant. il




Liouville’s Theorem for positive harmonic function on punctured plane

( positive on punctured plane w
tf u is positive and harmonic on R? \ {O}J

then u is constant.

Proof: The function
z > u(e)

is positive and harmonic on C and thus
is constant. il

The result above fails if n > 2 because
1

[Gers oy xa) 772

is positive and harmonic on R" \ {0}.

(xl,...,xn) —




average of harmonic function on circles
FiXOSRl < Ry < o0. Let
A={z€C:R| <z <Ry}




average of harmonic function on circles

Fix0 < R; < Ry < 0. Let
A={z€C:R <[] <R:}.

(harmonic function on annulus\

Suppose u is a real-valued
harmonic function on A. Then there
exist b, c € R such that

1 21 )
u(re®)dd = b + clogr

2 Jo

C‘or all r € (R, Ry).

o0 R

Ry



average of harmonic function on circles

Fix0 < R; < Ry < 0. Let
A={z€C:R <[] <R:}.

(harmonic function on annulus\ 0 Ry Ry

Suppose u is a real-valued
harmonic function on A. Then there
exist b, c € R such that

1 2 . forallr € (R,R,) and all § € [0, 27].
7 u(re®)dd = b + clogr (R1,Rz) [ ]
™ Jo

C‘or all r € (R, Ry).

J

Proof: By LCT, there exist g analytic
on A and ¢ € R such that

u(reie) = Reg(reig) +clogr



average of harmonic function on circles

Fix0 < R; < Ry < 0. Let
A={z€C:R <[] <R:}.

(harmonic function on annulus\ <0 Ry Ry

Suppose u is a real-valued
harmonic function on A. Then there
exist b, c € R such that

1 [ . forall r € (R,R2) and all 6 € [0,2x]. Thus
u(re”)dd = b+ clogr

2T Jo N Y
for all r € (Ry, Rs). o ; u(re )dH:Reﬂ ; g(re )d9+c10gr
\_ Y, ‘
Proof: By LCT, there exist g analytic = Re Zim / 8(z) dz +clogr
on A and ¢ € R such that {la=r} <
=b+clogr. il

u(reie) = Reg(reie) +clogr



series representation on annulus

(series representation on annulus

Suppose u is a real-valued harmonic
function on A. Then there exist ¢ € R and
{an}32 o C C such that

o0
u(reie) =clogr+ Z (anr"+a_nr_”)ei”9

n=—0o0

Q‘or all r € (Ri,Ry) and all 6 € [0, 27].

J




series representation on annulus

(series representation on annulus

Suppose u is a real-valued harmonic
function on A. Then there exist ¢ € R and
{an}32 o C C such that

o0
u(reie) =clogr+ Z (anr"+a_nr_”)ei”9

n=—0o0

Q‘or all r € (Ri,Ry) and all 6 € [0, 27].

Proof: By LCT, there existc € R and g
analytic on A such that

u(z) = clog|z[ + Re g(z).

J




series representation on annulus

oo
(series representation on annulus h g(z) = Z 2a,7".

Suppose u is a real-valued harmonic =00
function on A. Then there exist ¢ € R and
{an}32 . C C such that

o0
u(reie) =clogr+ Z (anr"+a_nr_”)ei”9
n=—o00

Q‘or all r € (Ri,Ry) and all 6 € [0, 27].

Proof: By LCT, there existc € R and g
analytic on A such that
u(z) = clog|z[ + Re g(z).

The analytic function g has a Laurent
series:

J




series representation on annulus

(series representation on annulus B g(z) = Z 2a,7".

Suppose u is a real-valued harmonic h
function on A. Then there exist ¢ € R and us o
{a,}2>__.  C such that u(z) = cloglz| + 8(z) +

o0
u(reie) =clogr+ Z (anr"+a_nr_”)ei”9

n=—0o0

dor all r € (Ri,Ry) and all 6 € [0, 27]. y

Proof: By LCT, there exist c € R and g
analytic on A such that

u(z) = clog|z[ + Re g(z).
The analytic function g has a Laurent

series:

A



series representation on annulus

( series representation on annulus A 8@ = > 2a,7".
Suppose u is a real-valued harmonic Th T
function on A. Then there exist ¢ € R and us N
{an}n2 o« € C such that u(z) = cloglz| + 8() —;—g(z)
u(reie) =clogr+ Z (anr"+a_nr_")ei"9 Now
n=-e 0\ __ S n _inf — n_—inf
forallr e (Ri,Ro) andall 6 € [0.27]. ) u(re”) = clogr+ Z_: (‘W e tare )
Proof: By LCT, there exist c € R and g >0 :
=clogr+ Y  (aw"+a—r")e™.

analytic on A such that
u(z) = clog|z[ + Re g(z).
The analytic function g has a Laurent

series:

n——oo

A



Dirichlet problem for annulus

Now assume that 0 < R; < R, < o0.

( Dirichlet problem on annulus w

hat « is harmonic on A and u|g4 = U.

tf U € C(0.A), then 3 unique u € C(A) suchJ 0 R Ry
t




Dirichlet problem for annulus

Now assume that 0 < R; < R, < o0.

( Dirichlet problem on annulus w
If U € C(8A), then 3 unique u € C(A) such v "
that u is harmonic on A and u|g4 = U. A

Proof: First suppose U: 0A — R and

U(Rlela Z bne’”e and U Rzele Z dnel”g
n=—N

Note that
b_,=b, and d_,=d,.



Dirichlet problem for annulus

Now assume that 0 < R; < R, < o0.

( Dirichlet problem on annulus w

If U € C(0.A), then 3 unique u € C(A) such 0 R %,
that u is harmonic on A and ulp4 = U.

Proof: First suppose U: 94 — R and

U(Rleia) = Z be™ and U Rze”9 Z d,e™.

n=— n=—N

o
u(re’p) =clogr—+ Z (anr” + ﬂr_'l)ei’le

n=—0o0




Dirichlet problem for annulus

Now assume that 0 < R; < R, < oo. a,R\" + @R, " =b,

— a,R" +a_,R, " =d,.
( Dirichlet problem on annulus w

tf U € C(0.A), then 3 unique u € C(A) suchJ
t

hat « is harmonic on A and u|g4 = U.

Proof: First suppose U:0A — R and

R1e Z be™ and U Rze”9 Z d,e™.

n=—N n=—N
Note that
b_,=b, and d_, =d,.
Forn=1,...,N, solve for a, and a_, in ”(Veie) = clogr+ Z (“nrn "’Er_n)eine
n=—o0




Dirichlet problem for annulus

Now assume that 0 < R; < R; < oo. aR\" +a R, = b,

— p aRy" +a—,R, ™" = d,.
( Dirichlet problem on annulus Replace n by —n and take complex

tf U € C(9.A), then 3 unique u € C(A) such conjugates to show all is well for n < 0.
t

hat « is harmonic on A and u|g4 = U.

Proof: First suppose U:0A — R and

R1e Z be™ and U Rze”9 Z d,e™.

n=—N n=—N
Note that
b_,=b, and d_, =d,.
Forn=1,...,N, solve for a, and a_, in “(Vew) = clogr+ Z (ant” +ﬂr—")eina
n=—co




Dirichlet problem for annulus

Now assume that 0 < R; < R; < oo. aR\" +a R, = b,

— p aRy" +a—,R, ™" = d,.
( Dirichlet problem on annulus Replace n by —n and take complex

tf U € C(9.A), then 3 unique u € C(A) such conjugates to show all is well for n < 0.
t

hat u is harmonic on A and u|s4 = U. For n = 0, solve for ¢ and a in
clogR; + 2ay = by
clog Ry + 2ay = dj.

Proof: First suppose U:0A — R and

R1e Z b,e™  and U Rze Z d,e™.

n=—N n=—N
Note that
b_,=b, and d_, =d,.
Forn=1,...,N, solve for a, and a_, in “(Vew) = clogr+ Z (ant” +ﬂr—")eine
n=—co




Dirichlet problem for annulus

Now assume that 0 < R; < R; < oo. aR\" +a R, = b,

— p a, Ry +a_,Ry" = d,.
( Dirichlet problem on annulus Replace 7 by —n and take complex

tf U € C(9.A), then 3 unique u € C(A) such conjugates to show all is well for n < 0.
t

hat u is harmonic on A and u|g4 = U. For n =0, solve for ¢ and a in
clogR; + 2ay = by
clog Ry + 2ay = d.

Proof: First suppose U:0A — R and

in For arbitrary u € C(0A), use
U(R § by and U(R § d,e™. : ’
e ¢ 2" ¢ Stone-Weierstass theorem and

n=-N n=—N :
Note that maximum modulus theorem. i
b_n=0b, and d_,=d,.
. 0\ _ _ ino
Forn=1,...,N, solve for a, and a—, in u(re”) =clogr+ Y (an" +azr™")e"
n=-—00




( Definition: doubly connected w

An open connected set ) is called doubly
connected if C \ €2 has exactly one bounded

connected component.




Doubly Connected Mapping Theorem

(Definition: doubly connected \ 7
An open connected set ) is called doubly y
connected if C \ €2 has exactly one bounded /////////
\connected component. P

(Doubly Connected Mapping Theorem\

Every doubly connected domain is
conformally equivalent to some annulus.




Doubly Connected Mapping Theorem

(Definition: doubly connected \ 7

An open connected set ) is called doubly y

connected if C \ 2 has exactly one bounded /////////

connected component.

\_ J

4 . )
Doubly Connected Mapping Theorem

Every doubly connected domain is
conformally equivalent to some annulus.

More precisely:

Suppose €2 is doubly connected. Then there
exist an annulus 4 and an injective analytic

dunctionf: Q — A from Q onto A. y




proof of Doubly Connected Mapping Theorem

Outline of proof: Let K denote the B
'

bounded connected component of C \ 2.
Assume 0 € K.




proof of Doubly Connected Mapping Theorem

Outline of proof: Let K denote the »

bounded connected component of C \ €.
Assume 0 € K. Let u be the continuous
real-valued function on € such that

u=00n0K and u=10n9(QQUK)
and u is harmonic on €.




proof of Doubly Connected Mapping Theorem

Outline of proof: Let K denote the

2

u=

bounded connected component of C \ €.
Assume 0 € K. Let u be the continuous
real-valued function on € such that

u=00n0K and u=10n9(QUK)

and u is harmonic on €.
By the LCT, there exist g analytic on 2
and ¢ > 0 such that

u(z) = cloglz| + Reg(z).




proof of Doubly Connected Mapping Theorem

Outline of proof: Let K denote the

2

u=

bounded connected component of C \ €.
Assume 0 € K. Let u be the continuous
real-valued function on € such that

u=00n0K and u=10n9(QUK)

and u is harmonic on ).
By the LCT, there exist g analytic on 2
and ¢ > 0 such that

u(z) = cloglz| + Reg(2).
Define f analytic on Q2 by
f@) = 2@




proof of Doubly Connected Mapping Theorem

Outline of proof: Let K denote the

2

u=

bounded connected component of C \ €.
Assume 0 € K. Let u be the continuous
real-valued function on € such that

u=00n0K and u=10n9(QUK)
and u is harmonic on 2.
By the LCT, there exist g analytic on 2
and ¢ > 0 such that

u(z) = cloglz| + Reg(z).
Define f analytic on Q2 by
f(z) = ze2@/e.

Then
log|f(z)| = log|z|+Re

8(z) _ u(z) <0‘ 1).

C C




proof of Doubly Connected Mapping Theorem

Outline of proof: Let K denote the

2

u=

bounded connected component of C \ €.
Assume 0 € K. Let u be the continuous
real-valued function on € such that

u=00n0K and u=10n9(QUK)

and u is harmonic on ).
By the LCT, there exist g analytic on 2
and ¢ > 0 such that

u(2) = clogld + Reg(2). ! »
Define f analytic on © by A= {Z €Cil<ef<e }
f(Z) — Zeg(z)/c' Thus
Then f: Q- A
B g(z) _u(z) 1 is analytic (and it turns out that f is
loglf(2)] = log|z|+Re c ¢ € (O’ c) injective and maps Q onto A).




proof of Doubly Connected Mapplng Theorem
% u=1%

Fix w € A. Let Ty and I'; be as in figur




proof of Doubly Connected Mapplng Theorem

Fix w € A. LetT'y and I'y be as in figures. 2
Argument principle: The number of times f
takes on the value w in the region between
I'p and I'; equals the winding number of
f(To) Uf(Ty) about w.




proof of Doubly Connected Mapping Theorem

Fix w € A. Let 'y and I'; be as in figures. 2 v:17%
Argument principle: The number of times f
takes on the value w in the region between
I'p and I'; equals the winding number of
f(To) Uf(Ty) about w.

The curve f(I'y) winds 0 times around w.




proof of Doubly Connected Mapping Theorem

Fixw e A. Let Ty and I'; be as in figures. 2 4= 1%
Argument principle: The number of times f
takes on the value w in the region between
I'p and I'; equals the winding number of
f(To) Uf(Ty) about w.

The curve f(T'y) winds 0 times around w.
The winding number of f(T";) about w
equals the winding number of f(I";) about
0, which equals the change in 5L logf(z)
as z goes once around I'y.




proof of Doubly Connected Mapping Theorem

Fixw e A. Let Ty and I'; be as in figures. 2 4= 1%

Argument principle: The number of times f e
takes on the value w in the region between
I'p and I'; equals the winding number of
f(To) Uf(Ty) about w.

The curve f(T'y) winds 0 times around w.
The winding number of f(I';) about w
equals the winding number of f(T";) about
0, which equals the change in 5L logf(z)
as z goes once around I';. Now

8(2)
o
Thus the change in 5= logf(z) around I'y

equals the change in 5--logz around I'y,
which equals 1. B

logf(z) =logz +
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