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linear maps and matrices

It is my experience that proofs involving
matrices can be shortened by 50% if one
throws the matrices out.

–Emil Artin, 1957
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notation and definitions

F = R or F = C.

V and W are finite-dimensional inner product
spaces over F.

n = dimV.

T : V → W is a linear map.

T∗ : W → V is the linear map defined by

〈Tv,w〉 = 〈v,T∗w〉
for all v ∈ V and all w ∈ W.

T∗ is called the adjoint of T.

An operator is called self-adjoint if it equals
its adjoint.

T∗T : V → V is self-adjoint because

(T∗T)∗ = T∗(T∗)∗ = T∗T.

Suppose λ ∈ F is an eigenvalue of
T∗T with eigenvector v ∈ V. Then

λ‖v‖2 = 〈λv, v〉

= 〈T∗Tv, v〉

= 〈Tv,Tv〉

≥ 0.

Thus λ ≥ 0. Hence all eigenvalues of
T∗T are nonnegative numbers.

The multiplicity of the eigenvalue λ of
T∗T is dimnull(T∗T − λI).
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singular values

definition: singular values

The singular values of T are the nonnegative
square roots of the eigenvalues of T∗T, listed
in decreasing order, each included as many
times as its multiplicity.

Example: Define T : F4 → F4 by

T(z1, z2, z3, z4) = (0, 3z1, 2z2,−3z4).

Then

T∗T(z1, z2, z3, z4) = (9z1, 4z2, 0, 9z4).

Thus the eigenvalues of T∗T are 9, 4, and 0,
with multiplicities 2, 1, and 1.
Hence the singular values of T are 3, 3, 2, 0.

Example: Suppose T : F4 → F3 has
matrix (with respect to standard bases) 0 0 0 −5

0 0 0 0
1 1 0 0

 .

Then T∗T has matrix
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 25

 .

The eigenvalues of T∗T are 25, 2, 0,
with multiplicities 1, 1, and 2. Thus the
singular values of T are 5,

√
2, 0, 0.
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singular values
V and W are finite-dimensional inner product
spaces over F.

n = dimV.

T : V → W is a linear map.

definition: singular values

The singular values of T are the nonnegative
square roots of the eigenvalues of T∗T, listed
in decreasing order, each included as many
times as its multiplicity.

T has n singular values.

basic results on singular values

(a) T is injective ⇐⇒ 0 is not a
singular value of T.

(b) The number of positive singular
values of T equals dim range T.

(c) T is surjective ⇐⇒
number of positive singular
values of T equals dimW.

(d) T = 0 ⇐⇒ all singular values
of T are 0.

(e) T is an isometry (‖Tv‖ = ‖v‖ for
all v ∈ V) ⇐⇒ all singular
values of T are 1.
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Erhard Schmidt result from 1907

characterization of positive singular values

Suppose s > 0. Then s is a singular value of
T if and only if there exist nonzero vectors
v ∈ V and w ∈ W such that

Tv = sw and T∗w = sv.

The earliest appearance I have
found of the singular value
decomposition in a linear algebra
textbook is in Gil Strang’s 1976
textbook Linear Algebra and Its
Applications, which includes the
following:

“These simple matrices are much
more valuable than they look,
because of a new way to factor the
matrix A. It is called the singular
value decomposition, and it is not
nearly as famous as it should be.”
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comparison of eigenvalues and singular values

list of eigenvalues list of singular values

context: vector spaces context: inner product spaces

defined only for linear maps from a
vector space to itself

defined for linear maps from an inner
product space to a possibly different inner
product space

can be arbitrary real numbers (if F = R)
or complex numbers (if F = C)

are nonnegative numbers

can be the empty list if F = R length of list equals dimension of domain

includes 0 ⇐⇒ operator is not invertible includes 0 ⇐⇒ linear map is not injective

no standard order, especially if F = C always listed in decreasing order
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SVD

singular value decomposition

Suppose the positive singular values of T are
s1, . . . , sm. Then there exist orthonormal lists
e1, . . . , em in V and f1, . . . , fm in W such that

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm
for every v ∈ V.

Proof Let s1, . . . , sn denote the singular values
of T. By the spectral theorem, there exists an
orthonormal basis e1, . . . , en of V with

T∗Tek = sk
2ek

for k = 1, . . . , n.

For k = 1, . . . ,m, let fk =
Tek

sk
. Then

〈fj, fk〉 =
1

sjsk
〈Tej,Tek〉 =

1
sjsk

〈
ej,T∗Tek

〉
=

sk

sj
〈ej, ek〉 =

{
0 if j 6= k,
1 if j = k.

Thus f1, . . . , fm is an orthonormal list.
If 1 ≤ k ≤ m, then Tek = skfk.
If m < k ≤ n, then Tek = 0.
Suppose v ∈ V. Then

Tv = T
(
〈v, e1〉e1 + · · ·+ 〈v, en〉en

)
= 〈v, e1〉Te1 + · · ·+ 〈v, em〉Tem

= s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm.
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diagonalization

singular value decomposition

Suppose the positive singular values of T are
s1, . . . , sm. Then there exist orthonormal lists
e1, . . . , em in V and f1, . . . , fm in W such that

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm
for every v ∈ V.

With notation as above,

Tek = sk fk

for k = 1, . . . ,m. Also,

rangeT = span(f1, . . . , fm).

Extend e1, . . . , em and f1, . . . , fm to orthonormal
bases e1, . . . , en and f1, . . . , fdimW of V and W.

Then

Tek =

{
skfk if 1 ≤ k ≤ m,

0 if m < k ≤ n.

The entry in row j, column k of the
matrix of T with respect to these bases
is

M
(
T,(e1, . . . , en), (f1, . . . , fdimW)

)
j,k

=

{
sk if 1 ≤ j = k ≤ m,

0 otherwise.

Thus T has a “diagonal” matrix with
respect to these bases.
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comparison of spectral theorem and singular value decomposition

spectral theorem singular value decomposition

describes only self-adjoint operators
(when F = R) or normal operators (when
F = C)

describes arbitrary linear maps from an
inner product space to a possibly different
inner product space

produces a single orthonormal basis produces two orthonormal lists, one for
domain space and one for range space,
that are not necessarily the same even
when range space equals domain space

different proofs depending upon whether
F = R or F = C

same proof works regardless of whether
F = R or F = C
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adjoint via SVD

SVD of adjoint

Suppose s1, . . . , sm are the positive singular
values of T. Suppose e1, . . . , em and f1, . . . , fm
are orthonormal lists in V and W such that

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm
for every v ∈ V. Then

T∗w = s1〈w, f1〉e1 + · · ·+ sm〈w, fm〉em

for every w ∈ W.

Proof

If v ∈ V and w ∈ W then

〈Tv,w〉

=
〈
s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm,w

〉
= s1〈v, e1〉〈f1,w〉+ · · ·+ sm〈v, em〉〈fm,w〉

=
〈
v, s1〈w, f1〉e1 + · · ·+ sm〈w, fm〉em

〉
.

This implies that

T∗w = s1〈w, f1〉e1 + · · ·+ sm〈w, fm〉em,

as desired.
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inverse via SVD

SVD of inverse

Suppose s1, . . . , sm are the positive singular
values of T. Suppose e1, . . . , em and f1, . . . , fm
are orthonormal lists in V and W such that

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm
for every v ∈ V. Then

T∗w = s1〈w, f1〉e1 + · · ·+ sm〈w, fm〉em

for every w ∈ W.
If T in invertible, then

T−1w =
〈w, f1〉

s1
e1 + · · ·+ 〈w, fm〉

sm
em

for every w ∈ W.

Proof

Suppose T in invertible and w ∈ W. Let

v =
〈w, f1〉

s1
e1 + · · ·+ 〈w, fm〉

sm
em.

Apply T to both sides, getting

Tv =
〈w, f1〉

s1
Te1 + · · ·+ 〈w, fm〉

sm
Tem

= 〈w, f1〉f1 + · · ·+ 〈w, fm〉fm

= w,

where the last line holds because
f1, . . . , fm is an orthonormal basis of
rangeT. The equation above shows
that v = T−1w.
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SVD for matrices

matrix version of SVD

Suppose A is an M-by-n matrix with rank m ≥ 1.
Then there exist an M-by-m matrix B with
orthonormal columns, an m-by-m diagonal
matrix D with positive entries on the diagonal,
and an n-by-m matrix C with orthonormal
columns such that

A = BDC∗.

Proof Let T : Fn → FM be the linear map
whose matrix equals A. Let s1, . . . , sm be the
positive singular values of T. By SVD, there
exist orthonormal lists e1, . . . , em and f1, . . . , fm
in Fn and FM such that

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm
for every v ∈ Fn.

Let B be the M-by-m matrix whose
columns are f1, . . . , fm.

Let D be the m-by-m diagonal matrix
whose diagonal entries are s1, . . . , sm.

Let C be the n-by-m matrix whose
columns are e1, . . . , em. Then

AC = BD.

Multiply both sides on the right by C∗,
and use ACC∗ = A to get

A = BDC∗.
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Frobenius norm

Hilbert–Schmidt norm and singular values

Let s1, . . . , sn denote the singular values of T.
Suppose v1, . . . , vn is an orthonormal basis
of V and w1, . . . ,wM is an orthonormal basis
of W. Then

n∑
k=1

‖Tvk‖2 =

n∑
k=1

M∑
j=1

|〈Tvk,wj〉|2 =

n∑
k=1

sk
2.

Proof
n∑

k=1

‖Tvk‖2 =
n∑

k=1

〈Tv,Tv〉 =
n∑

k=1

〈T∗Tvk, vk〉 = trace T∗T.

Thus this sum does not depend on the
orthonormal basis v1, . . . , vn.

Hence we need only show that
n∑

k=1

‖Tvk‖2 =

n∑
k=1

sk
2

for some orthonormal basis v1, . . . , vn

of V. Suppose we have a SVD

Tv =

m∑
k=1

sk〈v, ek〉fk.

Extend e1, . . . , em to an orthonormal
basis e1, . . . , en of V. Then

Tek =

{
skfk if 1 ≤ k ≤ m
0 if m < k ≤ n.

Thus
n∑

k=1

‖Tek‖2 =

n∑
k=1

sk
2.
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Hilbert matrix
Let Hn denote the n-by-n Hilbert matrix,
whose entry in row j, column k is 1

j+k−1 .

Example:

H4 =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

 .

My computer claims that if n = 20, then

s1 ≈ 1.91 and s20 ≈ 7.78 × 10−29.

Is H20 invertible? Equivalently, is H20 = 0?
Suppose b = (b1, . . . , b20) ∈ R20 with b 6= 0.
Then

〈H20b, b〉 =
20∑

k=1

20∑
j=1

bkbj
1

j + k − 1

=

20∑
k=1

20∑
j=1

bkbj

∫ 1

0
xk−1xj−1 dx

=

∫ 1

0

( 20∑
k=1

bkxk−1
)( 20∑

j=1

bjxj−1
)

dx

=

∫ 1

0

( 20∑
k=1

bkxk−1
)2

dx

> 0.

Thus H20b 6= 0; hence H20 is invertible.

detH20 ≈ 4.21 × 10−226
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applications of the SVD

singular value decomposition

Suppose the positive singular values of T are
s1, . . . , sm. Then there exist orthonormal lists
e1, . . . , em in V and f1, . . . , fm in W such that

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm
for every v ∈ V.

One week from today:

norms of linear maps

approximation of T by linear maps
with lower-dimensional range

polar decomposition

operators applied to ellipsoids and
parallelograms

volume via singular values

formula for pseudoinverse using
SVD
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reference

Sheldon Axler, Linear Algebra Done Right, fourth edition to be
published in Springer’s Undergraduate Texts in Mathematics series
around December 2023.

Chapter 7 (Operators in Inner Product Spaces) contains the material
on the singular value decomposition in Sections 7E and 7F. Chapter 7
is now freely and legally available on the book’s website
https://linear.axler.net.

This will be an Open Access book, meaning that the electronic version
will be legally free to the world.


