The Singular Value Decomposition

Sheldon Axler

27 January 2023 and 3 February 2023

linear maps and matrices

It is my experience that proofs involving matrices can be shortened by 50% if one throws the matrices out.
-Emil Artin, 1957

notation and definitions

$$
\mathbf{F}=\mathbf{R} \text { or } \mathbf{F}=\mathbf{C} .
$$

V and W are finite-dimensional inner product spaces over \mathbf{F}.
$n=\operatorname{dim} V$.
$T: V \rightarrow W$ is a linear map.
$T^{*}: W \rightarrow V$ is the linear map defined by

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for all $v \in V$ and all $w \in W$.
T^{*} is called the adjoint of T.
An operator is called self-adjoint if it equals its adjoint.
$T^{*} T: V \rightarrow V$ is self-adjoint because

$$
\left(T^{*} T\right)^{*}=T^{*}\left(T^{*}\right)^{*}=T^{*} T .
$$

Suppose $\lambda \in \mathbf{F}$ is an eigenvalue of $T^{*} T$ with eigenvector $v \in V$. Then

$$
\begin{aligned}
\lambda\|v\|^{2} & =\langle\lambda v, v\rangle \\
& =\left\langle T^{*} T v, v\right\rangle \\
& =\langle T v, T v\rangle \\
& \geq 0 .
\end{aligned}
$$

Thus $\lambda \geq 0$. Hence all eigenvalues of $T^{*} T$ are nonnegative numbers.

The multiplicity of the eigenvalue λ of $T^{*} T$ is $\operatorname{dim} \operatorname{null}\left(T^{*} T-\lambda I\right)$.

definition: singular values

The singular values of T are the nonnegative square roots of the eigenvalues of $T^{*} T$, listed in decreasing order, each included as many times as its multiplicity.

Example: Define $T: \mathbf{F}^{4} \rightarrow \mathbf{F}^{4}$ by

$$
T\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(0,3 z_{1}, 2 z_{2},-3 z_{4}\right)
$$

Then

$$
T^{*} T\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(9 z_{1}, 4 z_{2}, 0,9 z_{4}\right)
$$

Thus the eigenvalues of $T^{*} T$ are 9,4 , and 0 , with multiplicities 2,1 , and 1 . Hence the singular values of T are $3,3,2,0$.

Example: Suppose $T: \mathbf{F}^{4} \rightarrow \mathbf{F}^{3}$ has matrix (with respect to standard bases)

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & -5 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right) .
$$

Then $T^{*} T$ has matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 25
\end{array}\right) .
$$

The eigenvalues of $T^{*} T$ are $25,2,0$, with multiplicities 1,1 , and 2 . Thus the singular values of T are $5, \sqrt{2}, 0,0$.
V and W are finite-dimensional inner product spaces over \mathbf{F}.
$n=\operatorname{dim} V$.
$T: V \rightarrow W$ is a linear map.

definition: singular values

The singular values of T are the nonnegative square roots of the eigenvalues of $T^{*} T$, listed in decreasing order, each included as many times as its multiplicity.
T has n singular values.

basic results on singular values

(a) T is injective $\Longleftrightarrow 0$ is not a singular value of T.
(b) The number of positive singular values of T equals dim range T.
(c) T is surjective number of positive singular values of T equals dim W.
(d) $T=0 \Longleftrightarrow$ all singular values of T are 0 .
(e) T is an isometry $(\|T v\|=\|v\|$ for all $v \in V) \Longleftrightarrow$ all singular values of T are 1.

characterization of positive singular values

Suppose $s>0$. Then s is a singular value of T if and only if there exist nonzero vectors $v \in V$ and $w \in W$ such that

$$
T v=s w \quad \text { and } \quad T^{*} w=s v
$$

The earliest appearance I have found of the singular value decomposition in a linear algebra textbook is in Gil Strang's 1976 textbook Linear Algebra and Its Applications, which includes the following:
"These simple matrices are much more valuable than they look, because of a new way to factor the matrix A. It is called the singular value decomposition, and it is not nearly as famous as it should be."

list of eigenvalues	list of singular values
context: vector spaces	context: inner product spaces
defined only for linear maps from a vector space to itself	defined for linear maps from an inner product space to a possibly different inner product space
can be arbitrary real numbers (if $\mathbf{F}=\mathbf{R}$) or complex numbers (if $\mathbf{F}=\mathbf{C}$)	are nonnegative numbers
can be the empty list if $\mathbf{F}=\mathbf{R}$	length of list equals dimension of domain
includes $0 \Longleftrightarrow$ operator is not invertible	includes $0 \Longleftrightarrow$ linear map is not injective
no standard order, especially if $\mathbf{F}=\mathbf{C}$	always listed in decreasing order

singular value decomposition

Suppose the positive singular values of T are s_{1}, \ldots, s_{m}. Then there exist orthonormal lists e_{1}, \ldots, e_{m} in V and f_{1}, \ldots, f_{m} in W such that

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}
$$

for every $v \in V$.
Proof Let s_{1}, \ldots, s_{n} denote the singular values of T. By the spectral theorem, there exists an orthonormal basis e_{1}, \ldots, e_{n} of V with

$$
T^{*} T e_{k}=s_{k}^{2} e_{k}
$$

for $k=1, \ldots, n$.

For $k=1, \ldots, m$, let $f_{k}=\frac{T e_{k}}{s_{k}}$. Then

$$
\left\langle f_{j}, f_{k}\right\rangle=\frac{1}{s_{j} s_{k}}\left\langle T e_{j}, T e_{k}\right\rangle=\frac{1}{s_{j} s_{k}}\left\langle e_{j}, T^{*} T e_{k}\right\rangle
$$

$$
=\frac{s_{k}}{s_{j}}\left\langle e_{j}, e_{k}\right\rangle= \begin{cases}0 & \text { if } j \neq k \\ 1 & \text { if } j=k\end{cases}
$$

Thus f_{1}, \ldots, f_{m} is an orthonormal list.
If $1 \leq k \leq m$, then $T e_{k}=s_{k} f_{k}$.
If $m<k \leq n$, then $T e_{k}=0$.
Suppose $v \in V$. Then

$$
\begin{aligned}
T v & =T\left(\left\langle v, e_{1}\right\rangle e_{1}+\cdots+\left\langle v, e_{n}\right\rangle e_{n}\right) \\
& =\left\langle v, e_{1}\right\rangle T e_{1}+\cdots+\left\langle v, e_{m}\right\rangle T e_{m} \\
& =s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m} .
\end{aligned}
$$

singular value decomposition

Suppose the positive singular values of T are s_{1}, \ldots, s_{m}. Then there exist orthonormal lists e_{1}, \ldots, e_{m} in V and f_{1}, \ldots, f_{m} in W such that

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}
$$

for every $v \in V$.
With notation as above,

$$
T e_{k}=s_{k} f_{k}
$$

for $k=1, \ldots, m$. Also,

$$
\text { range } T=\operatorname{span}\left(f_{1}, \ldots, f_{m}\right)
$$

Extend e_{1}, \ldots, e_{m} and f_{1}, \ldots, f_{m} to orthonormal bases e_{1}, \ldots, e_{n} and $f_{1}, \ldots, f_{\operatorname{dim} W}$ of V and W.

Then

$$
T e_{k}= \begin{cases}s_{k} f_{k} & \text { if } 1 \leq k \leq m \\ 0 & \text { if } m<k \leq n\end{cases}
$$

The entry in row j, column k of the matrix of T with respect to these bases is

$$
\begin{aligned}
& \mathcal{M}\left(T,\left(e_{1}, \ldots, e_{n}\right),\left(f_{1}, \ldots, f_{\operatorname{dim} W}\right)\right)_{j, k} \\
& = \begin{cases}s_{k} & \text { if } 1 \leq j=k \leq m, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Thus T has a "diagonal" matrix with respect to these bases.

spectral theorem	singular value decomposition
describes only self-adjoint operators $($ when $\mathbf{F}=\mathbf{R}$) or normal operators (when $\mathbf{F}=\mathbf{C})$	describes arbitrary linear maps from an inner product space to a possibly different inner product space
produces a single orthonormal basis	produces two orthonormal lists, one for domain space and one for range space, that are not necessarily the same even when range space equals domain space
different proofs depending upon whether $\mathbf{F}=\mathbf{R}$ or $\mathbf{F}=\mathbf{C}$	same proof works regardless of whether $\mathbf{F}=\mathbf{R}$ or $\mathbf{F}=\mathbf{C}$

SVD of adjoint

Suppose s_{1}, \ldots, s_{m} are the positive singular values of T. Suppose e_{1}, \ldots, e_{m} and f_{1}, \ldots, f_{m} are orthonormal lists in V and W such that

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}
$$

for every $v \in V$. Then

$$
T^{*} w=s_{1}\left\langle w, f_{1}\right\rangle e_{1}+\cdots+s_{m}\left\langle w, f_{m}\right\rangle e_{m}
$$

for every $w \in W$.

Proof

If $v \in V$ and $w \in W$ then
$\langle T v, w\rangle$

$$
\begin{aligned}
& =\left\langle s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}, w\right\rangle \\
& =s_{1}\left\langle v, e_{1}\right\rangle\left\langle f_{1}, w\right\rangle+\cdots+s_{m}\left\langle v, e_{m}\right\rangle\left\langle f_{m}, w\right\rangle \\
& =\left\langle v, s_{1}\left\langle w, f_{1}\right\rangle e_{1}+\cdots+s_{m}\left\langle w, f_{m}\right\rangle e_{m}\right\rangle .
\end{aligned}
$$

This implies that

$$
T^{*} w=s_{1}\left\langle w, f_{1}\right\rangle e_{1}+\cdots+s_{m}\left\langle w, f_{m}\right\rangle e_{m},
$$

as desired.

SVD of inverse

Suppose s_{1}, \ldots, s_{m} are the positive singular values of T. Suppose e_{1}, \ldots, e_{m} and f_{1}, \ldots, f_{m} are orthonormal lists in V and W such that

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}
$$

for every $v \in V$. Then

$$
T^{*} w=s_{1}\left\langle w, f_{1}\right\rangle e_{1}+\cdots+s_{m}\left\langle w, f_{m}\right\rangle e_{m}
$$

for every $w \in W$.
If T in invertible, then

$$
T^{-1} w=\frac{\left\langle w, f_{1}\right\rangle}{s_{1}} e_{1}+\cdots+\frac{\left\langle w, f_{m}\right\rangle}{s_{m}} e_{m}
$$

for every $w \in W$.

Proof
Suppose T in invertible and $w \in W$. Let

$$
v=\frac{\left\langle w, f_{1}\right\rangle}{s_{1}} e_{1}+\cdots+\frac{\left\langle w, f_{m}\right\rangle}{s_{m}} e_{m} .
$$

Apply T to both sides, getting

$$
\begin{aligned}
T v & =\frac{\left\langle w, f_{1}\right\rangle}{s_{1}} T e_{1}+\cdots+\frac{\left\langle w, f_{m}\right\rangle}{s_{m}} T e_{m} \\
& =\left\langle w, f_{1}\right\rangle f_{1}+\cdots+\left\langle w, f_{m}\right\rangle f_{m} \\
& =w
\end{aligned}
$$

where the last line holds because f_{1}, \ldots, f_{m} is an orthonormal basis of range T. The equation above shows that $v=T^{-1} w$.

matrix version of SVD

Suppose A is an M-by- n matrix with rank $m \geq 1$. Then there exist an M-by- m matrix B with orthonormal columns, an m-by- m diagonal matrix D with positive entries on the diagonal, and an n-by- m matrix C with orthonormal columns such that

$$
A=B D C^{*} .
$$

Proof Let $T: \mathbf{F}^{n} \rightarrow \mathbf{F}^{M}$ be the linear map whose matrix equals A. Let s_{1}, \ldots, s_{m} be the positive singular values of T. By SVD, there exist orthonormal lists e_{1}, \ldots, e_{m} and f_{1}, \ldots, f_{m} in \mathbf{F}^{n} and \mathbf{F}^{M} such that

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}
$$

for every $v \in \mathbf{F}^{n}$.
Let B be the M-by- m matrix whose columns are f_{1}, \ldots, f_{m}.

Let D be the m-by- m diagonal matrix whose diagonal entries are s_{1}, \ldots, s_{m}.
Let C be the n-by- m matrix whose columns are e_{1}, \ldots, e_{m}. Then

$$
A C=B D .
$$

Multiply both sides on the right by C^{*}, and use $A C C^{*}=A$ to get

$$
A=B D C^{*} .
$$

Hilbert-Schmidt norm and singular values

Let s_{1}, \ldots, s_{n} denote the singular values of T. Suppose v_{1}, \ldots, v_{n} is an orthonormal basis of V and w_{1}, \ldots, w_{M} is an orthonormal basis of W. Then

$$
\sum_{k=1}^{n}\left\|T v_{k}\right\|^{2}=\sum_{k=1}^{n} \sum_{j=1}^{M}\left|\left\langle T v_{k}, w_{j}\right\rangle\right|^{2}=\sum_{k=1}^{n} s_{k}^{2} .
$$

Proof
$\sum_{k=1}^{n}\left\|T v_{k}\right\|^{2}=\sum_{k=1}^{n}\langle T v, T v\rangle=\sum_{k=1}^{n}\left\langle T^{*} T v_{k}, v_{k}\right\rangle=\operatorname{trace} T^{*} T . \quad T e_{k}= \begin{cases}s_{k} f_{k} & \text { if } 1 \leq k \leq m \\ 0 & \text { if } m<k \leq n .\end{cases}$
Thus this sum does not depend on the orthonormal basis v_{1}, \ldots, v_{n}.

Let H_{n} denote the n-by- n Hilbert matrix, whose entry in row j, column k is $\frac{1}{j+k-1}$.

Example:

$$
H_{4}=\left(\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right)
$$

My computer claims that if $n=20$, then

$$
s_{1} \approx 1.91 \quad \text { and } \quad s_{20} \approx 7.78 \times 10^{-29}
$$

Is H_{20} invertible? Equivalently, is $H_{20}=0$? Suppose $b=\left(b_{1}, \ldots, b_{20}\right) \in \mathbf{R}^{20}$ with $b \neq 0$. Then

$$
\left\langle H_{20} b, b\right\rangle=\sum_{k=1}^{20} \sum_{j=1}^{20} b_{k} b_{j} \frac{1}{j+k-1}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{20} \sum_{j=1}^{20} b_{k} b_{j} \int_{0}^{1} x^{k-1} x^{j-1} d x \\
& =\int_{0}^{1}\left(\sum_{k=1}^{20} b_{k} x^{k-1}\right)\left(\sum_{j=1}^{20} b_{j} x^{j-1}\right) d x
\end{aligned}
$$

$$
=\int_{0}^{1}\left(\sum_{k=1}^{20} b_{k} x^{k-1}\right)^{2} d x
$$

$$
>0
$$

Thus $H_{20} b \neq 0$; hence H_{20} is invertible.

$$
\operatorname{det} H_{20} \approx 4.21 \times 10^{-226}
$$

singular value decomposition

Suppose the positive singular values of T are s_{1}, \ldots, s_{m}. Then there exist orthonormal lists e_{1}, \ldots, e_{m} in V and f_{1}, \ldots, f_{m} in W such that

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}
$$

for every $v \in V$.

One week from today:

- norms of linear maps
- approximation of T by linear maps with lower-dimensional range
- polar decomposition
- operators applied to ellipsoids and parallelograms
- volume via singular values
- formula for pseudoinverse using SVD

Sheldon Axler, Linear Algebra Done Right, fourth edition to be published in Springer's Undergraduate Texts in Mathematics series around December 2023.

Chapter 7 (Operators in Inner Product Spaces) contains the material on the singular value decomposition in Sections 7E and 7F. Chapter 7 is now freely and legally available on the book's website https://linear.axler.net.

This will be an Open Access book, meaning that the electronic version will be legally free to the world.

