Sheldon Axler

3 February 2023

Singular value decomposition, a tool of great might, A method for breaking down data with insight. From matrices to vectors, it's a subject that's so bright, A fundamental tool for solving many problems with great light.

Eigenvectors and eigenvalues, so intriguing to behold, A way to understand the behavior of a matrix to unfold, With SVD, we can analyze and comprehend, A tool for understanding and solving complex systems to the end.
-written by ChatGPT with input "poem about singular value decomposition"
$\mathbf{F}=\mathbf{R}$ or $\mathbf{F}=\mathbf{C}$.
V and W are finite-dimensional inner product spaces over \mathbf{F}.
$n=\operatorname{dim} V$.
$T: V \rightarrow W$ is a linear map.

definition: singular values

The singular values of T are the nonnegative square roots of the eigenvalues of $T^{*} T$, listed in decreasing order, each included as many times as its multiplicity.

Let $s_{1} \geq \cdots \geq s_{m}$ denote the positive singular values of T.

singular value decomposition

There exist orthonormal lists e_{1}, \ldots, e_{m} in V and f_{1}, \ldots, f_{m} in W such that

$$
\begin{aligned}
& \quad T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m} \\
& \text { for every } v \in V
\end{aligned}
$$

norms of linear maps

Standard definition of $\|T\|$:

$$
\|T\|=\sup \{\|T v\|: v \in V \text { and }\|v\| \leq 1\}
$$

Pedagogical problem:

- Students may not be familiar with sup.
- Replacing sup with max may not work because students may not know that a continuous function on a compact set has a maximum.

Suppose e_{1}, \ldots, e_{m} and f_{1}, \ldots, f_{m} are orthonormal lists in V and W such that

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}
$$

for all $v \in V$.

If $v \in V$ and $\|v\| \leq 1$ then

$$
\begin{aligned}
\|T v\|^{2} & =s_{1}^{2}\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\cdots+s_{m}^{2}\left|\left\langle v, e_{m}\right\rangle\right|^{2} \\
& \leq s_{1}^{2}\left(\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\cdots+\left|\left\langle v, e_{m}\right\rangle\right|^{2}\right) \\
& \leq s_{1}^{2}\|v\|^{2} \\
& \leq s_{1}^{2}
\end{aligned} \text { and thus }\|T v\| \leq s_{1} .
$$

Because $T e_{1}=s_{1} f_{1}$, we have

$$
\max \{\|T v\|: v \in V \text { and }\|v\| \leq 1\}=s_{1}
$$

Now we can define $\|T\|$ by

$$
\|T\|=\max \{\|T v\|: v \in V \text { and }\|v\| \leq 1\}
$$

$$
=\text { largest singular value of } T
$$

How can we best approximate T by linear maps with lower-dimensional range?

Suppose T has singular value decomposition

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}
$$

Suppose $k \in\{1, \ldots, m-1\}$. To approximate T by linear maps whose range has dimension at most k, throw away the terms

$$
s_{k+1}\left\langle v, e_{k+1}\right\rangle f_{k+1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m},
$$

leaving

$$
s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{k}\right\rangle f_{k}
$$

Let $\mathcal{L}_{k}(V, W)$ denote the set of linear maps $S: V \rightarrow W$ such that dim range $S \leq k$.
best approximation by linear map whose range has dimension $\leq k$

Suppose

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}
$$

is a singular value decomposition of T and $1 \leq k<m$. Then

$$
\min \left\{\|T-S\|: S \in \mathcal{L}_{k}(V, W)\right\}=s_{k+1}
$$

Furthermore, if $T_{k}: V \rightarrow W$ is defined by

$$
T_{k} v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{k}\left\langle v, e_{k}\right\rangle f_{k}
$$

for $v \in V$, then dim range $T_{k} \leq k$ and $\left\|T-T_{k}\right\|=s_{k+1}$.
best approximation by linear map whose range has dimension $\leq k$

Suppose

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}
$$

is a singular value decomposition of T and $1 \leq k<m$. Then

$$
\min \left\{\|T-S\|: S \in \mathcal{L}_{k}(V, W)\right\}=s_{k+1} .
$$

Furthermore, if $T_{k}: V \rightarrow W$ is defined by

$$
T_{k} v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{k}\left\langle v, e_{k}\right\rangle f_{k}
$$

for $v \in V$, then dim range $T_{k} \leq k$ and $\left\|T-T_{k}\right\|=s_{k+1}$.

Proof Suppose $S \in \mathcal{L}_{k}(V, W)$. Hence
$S e_{1}, \ldots, S e_{k+1}$ is linearly dependent. Thus there exist $a_{1}, \ldots, a_{k+1} \in \mathbf{F}$ such that

$$
a_{1} S e_{1}+\cdots+a_{k+1} S e_{k+1}=0
$$

and $\left|a_{1}\right|^{2}+\cdots+\left|a_{k+1}\right|^{2}=1$. We have

$$
\begin{aligned}
\|(T & -S)\left(a_{1} e_{1}+\cdots+a_{k+1} e_{k+1}\right) \|^{2} \\
& =\left\|T\left(a_{1} e_{1}+\cdots+a_{k+1} e_{k+1}\right)\right\|^{2} \\
& =\left\|s_{1} a_{1} f_{1}+\cdots+s_{k+1} a_{k+1} f_{k+1}\right\|^{2} \\
& =s_{1}^{2}\left|a_{1}\right|^{2}+\cdots+s_{k+1}^{2}\left|a_{k+1}\right|^{2} \\
& \geq s_{k+1}^{2}\left(\left|a_{1}\right|^{2}+\cdots+\left|a_{k+1}\right|^{2}\right) \\
& =s_{k+1}^{2} .
\end{aligned}
$$

Thus $\|T-S\| \geq s_{k+1}$. \square

norm of restriction to subspace of dimension k

Let $s_{1} \geq \cdots \geq s_{n}$ denote the singular values of T.

```
minimal restriction of T to subspace of dimension k
Suppose 1\leqk\leqn. Then
    min}{|T\mp@subsup{|}{U}{}|:U\mathrm{ is a subspace of V with }\operatorname{dim}U=k}=\mp@subsup{s}{n-k+1}{}
```


best approximation by an isometry

Suppose $\operatorname{dim} W \geq n$. Let e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{n} be orthonormal bases of V and W such that

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{n}\left\langle v, e_{n}\right\rangle f_{n}
$$

for all $v \in V$.
Define $S: V \rightarrow W$ by

$$
S v=\left\langle v, e_{1}\right\rangle f_{1}+\cdots+\left\langle v, e_{n}\right\rangle f_{n} .
$$

Then
(a) S is an isometry and $\|T-S\|=\max \left\{\left|s_{1}-1\right|, \ldots,\left|s_{n}-1\right|\right\}$;
(b) if $E: V \rightarrow W$ is an isometry, then $\|T-E\| \geq\|T-S\|$.

The polar decomposition of a complex number z is

$$
z=r e^{i \theta}=e^{i \theta} r
$$

where $\overline{e^{i \theta}} e^{i \theta}=1$ and $r=|z|=\sqrt{\bar{z} z} \geq 0$.
A linear map $S: V \rightarrow V$ is called unitary if

$$
S^{*} S=S S^{*}=I
$$

Because V is finite-dimensional, if $S: V \rightarrow V$ is linear then

$$
S^{*} S=I \Longleftrightarrow S S^{*}=I
$$

Thus an operator from V to V is unitary if and only if it is an isometry.

If $S: V \rightarrow V$ is a positive operator, then \sqrt{S} denotes the unique positive operator on V such that $(\sqrt{S})^{2}=S$.
Suppose $W=V$ and we have an SVD

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\ldots+s_{n}\left\langle v, e_{n}\right\rangle f_{n}
$$

Then

$$
T^{*} v=s_{1}\left\langle v, f_{1}\right\rangle e_{1}+\ldots+s_{n}\left\langle v, f_{n}\right\rangle e_{n}
$$

Thus

$$
T^{*} T v=s_{1}^{2}\left\langle v, e_{1}\right\rangle e_{1}+\ldots+s_{n}^{2}\left\langle v, e_{n}\right\rangle e_{n}
$$

and

$$
\sqrt{T^{*} T} v=s_{1}\left\langle v, e_{1}\right\rangle e_{1}+\ldots+s_{n}\left\langle v, e_{n}\right\rangle e_{n}
$$

polar decomposition

Suppose $T: V \rightarrow V$ is linear. Then there exists a unitary operator $S: V \rightarrow V$ such that

$$
T=S \sqrt{T^{*} T}
$$

Proof Suppose we have an SVD

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\ldots+s_{n}\left\langle v, e_{n}\right\rangle f_{n}
$$

for all $v \in V$. Define $S: V \rightarrow V$ by

$$
S v=\left\langle v, e_{1}\right\rangle f_{1}+\ldots+\left\langle v, e_{n}\right\rangle f_{n}
$$

Then S is an isometry and hence is unitary.

We have

$$
S e_{k}=f_{k}
$$

$$
\text { for } k=1, \ldots, n \text { and }
$$

$$
\sqrt{T^{*} T} v=s_{1}\left\langle v, e_{1}\right\rangle e_{1}+\ldots+s_{n}\left\langle v, e_{n}\right\rangle e_{n}
$$

Thus

$$
\begin{aligned}
S\left(\sqrt{T^{*} T} v\right) & =s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\ldots+s_{n}\left\langle v, e_{n}\right\rangle f_{n} \\
& =T v .
\end{aligned}
$$

Note that if $T=S \sqrt{T^{*} T}$ where S is as in the proof above, then S is a best approximation to T among the unitary operators.

operators applied to ellipsoids

definition: ball, $B(r)$

The ball in V centered at 0 with radius 1 , denoted B, is defined by

$$
B=\{v \in V:\|v\|<1\} .
$$

The ball B in \mathbf{R}^{2}.

operators applied to ellipsoids

definition: ellipsoid, $E\left(s_{1} f_{1}, \ldots, s_{n} f_{n}\right)$, principal axes

Suppose that f_{1}, \ldots, f_{n} is an orthonormal basis of V and s_{1}, \ldots, s_{n} are positive numbers. The ellipsoid $E\left(s_{1} f_{1}, \ldots, s_{n} f_{n}\right)$ with principal axes $s_{1} f_{1}, \ldots, s_{n} f_{n}$ is defined by

$$
E\left(s_{1} f_{1}, \ldots, s_{n} f_{n}\right)=\left\{v \in V: \frac{\left|\left\langle v, f_{1}\right\rangle\right|^{2}}{s_{1}^{2}}+\cdots+\frac{\left|\left\langle v, f_{n}\right\rangle\right|^{2}}{s_{n}^{2}}<1\right\} .
$$

The ellipsoid $E\left(2 f_{1}, f_{2}\right)$ in \mathbf{R}^{2}, where f_{1}, f_{2} is the standard basis of \mathbf{R}^{2}.

The ellipsoid $E\left(2 f_{1}, f_{2}\right)$ in \mathbf{R}^{2}, where

$$
f_{1}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \text { and } f_{2}=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) .
$$

operators applied to ellipsoids

The ellipsoid $E\left(4 f_{1}, 3 f_{2}, 2 f_{3}\right)$ in \mathbf{R}^{3}, where f_{1}, f_{2}, f_{3} is the standard basis of \mathbf{R}^{3}.

operators applied to ellipsoids

invertible operator takes ball to ellipsoid
Suppose $T: V \rightarrow V$ is invertible. Then T maps the ball B in V onto an ellipsoid in V.

Proof Suppose T has SVD

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{n}\left\langle v, e_{n}\right\rangle f_{n}
$$

for all $v \in V$. We will show that

$$
T(B)=E\left(s_{1} f_{1}, \ldots, s_{n} f_{n}\right)
$$

First suppose $v \in B$. Then

To prove inclusion in the other direction, suppose $w \in E\left(s_{1} f_{1}, \ldots, s_{n} f_{n}\right)$.
Let

$$
v=\frac{\left\langle w, f_{1}\right\rangle}{s_{1}} e_{1}+\cdots+\frac{\left\langle w, f_{n}\right\rangle}{s_{n}} e_{n} .
$$

Then $\|v\|<1$; hence $v \in B$.
Because $T e_{k}=s_{k} f_{k}$, we have

$$
\begin{aligned}
T v & =\left\langle w, f_{1}\right\rangle f_{1}+\cdots+\left\langle w, f_{n}\right\rangle f_{n} \\
& =w .
\end{aligned}
$$

Thus $T(B) \supset E\left(s_{1} f_{1}, \ldots, s_{n} f_{n}\right)$.

$$
\frac{\left|\left\langle T v, f_{1}\right\rangle\right|^{2}}{s_{1}^{2}}+\cdots+\frac{\left|\left\langle T v, f_{n}\right\rangle\right|^{2}}{s_{n}^{2}}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\cdots+\left|\left\langle v, e_{n}\right\rangle\right|^{2}<1 .
$$

Thus $T v \in E\left(s_{1} f_{1}, \ldots, s_{n} f_{n}\right)$, and hence $T(B) \subset E\left(s_{1} f_{1}, \ldots, s_{n} f_{n}\right)$.

invertible operator takes ellipsoids to ellipsoids

Suppose $T: V \rightarrow V$ is invertible and E is an ellipsoid in V. Then $T(E)$ is an ellipsoid in V.

Proof Let $S: V \rightarrow V$ be an invertible operator such that $E=S(B)$. Then

$$
\begin{aligned}
T(E) & =T(S(B)) \\
& =(T S)(B) .
\end{aligned}
$$

By our previous result, the invertible linear map TS maps the ball to an ellipsoid.

operators applied to parallelepipeds

definition: $P\left(v_{1}, \ldots, v_{n}\right)$, parallelepiped

Suppose v_{1}, \ldots, v_{n} is a basis of V. Let

$$
P\left(v_{1}, \ldots, v_{n}\right)=\left\{a_{1} v_{1}+\cdots+a_{n} v_{n}: a_{1}, \ldots, a_{n} \in(0,1)\right\} .
$$

A parallelepiped is a set of the form $v+P\left(v_{1}, \ldots, v_{n}\right)$ for some $v \in V$. The vectors v_{1}, \ldots, v_{n} are called the edges of this parallelepiped.

A parallelepiped in \mathbf{R}^{3}.

The parallelepiped

$$
(0.3,0.5)+P((1,0),(1,1))
$$

$$
\text { in } \mathbf{R}^{2}
$$

operators applied to parallelepipeds

invertible operator takes parallelepipeds to parallelepipeds

Suppose $v \in V$ and v_{1}, \ldots, v_{n} is a basis of V. Suppose $T: V \rightarrow V$ is invertible. Then

$$
T\left(v+P\left(v_{1}, \ldots, v_{n}\right)\right)=T v+P\left(T v_{1}, \ldots, T v_{n}\right)
$$

Proof Because T is invertible, the list $T v_{1}, \ldots, T v_{n}$ is a basis of V. The linearity of T implies that

$$
T\left(v+a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=T v+a_{1} T v_{1}+\cdots+a_{n} T v_{n}
$$

for all $a_{1}, \ldots, a_{n} \in(0,1)$. Thus

$$
T\left(v+P\left(v_{1}, \ldots, v_{n}\right)\right)=T v+P\left(T v_{1}, \ldots, T v_{n}\right)
$$

as desired.

operators applied to parallelepipeds

definition: box

A box in V is a set of the form

$$
v+P\left(r_{1} e_{1}, \ldots, r_{n} e_{n}\right)
$$

where $v \in V$ and r_{1}, \ldots, r_{n} are positive numbers and e_{1}, \ldots, e_{n} is an orthonormal basis of V.

The box

$$
(1,0)+P\left(\sqrt{2} e_{1}, \sqrt{2} e_{2}\right)
$$

where

$$
e_{1}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \text { and } e_{2}=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) .
$$

The box $P\left(e_{1}, 2 e_{2}, e_{3}\right)$, where e_{1}, e_{2}, e_{3} is the standard basis of \mathbf{R}^{3}.
operators applied to parallelepipeds

boxes
parallelepipeds

each operator takes some boxes to boxes

Suppose $T: V \rightarrow V$ is invertible. Suppose T has singular value decomposition

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{n}\left\langle v, e_{n}\right\rangle f_{n},
$$

where e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{n} are orthonormal bases of V and the equation above holds for all $v \in V$. Then T maps the box $v+P\left(r_{1} e_{1}, \ldots, r_{n} e_{n}\right)$ onto the box $T v+P\left(r_{1} s_{1} f_{1}, \ldots, r_{n} s_{n} f_{n}\right)$ for all positive numbers r_{1}, \ldots, r_{n} and all $v \in V$.

Proof If $a_{1}, \ldots, a_{n} \in(0,1)$ and r_{1}, \ldots, r_{n} are positive numbers and $v \in V$, then

$$
T\left(v+a_{1} r_{1} e_{1}+\cdots+a_{n} r_{n} e_{n}\right)=T v+a_{1} r_{1} s_{1} f_{1}+\cdots+a_{n} r_{n} s_{n} f_{n}
$$

Thus $T\left(v+P\left(r_{1} e_{1}, \ldots, r_{n} e_{n}\right)\right)=T v+P\left(r_{1} s_{1} f_{1}, \ldots, r_{n} s_{n} f_{n}\right)$.

For this topic, assume $\mathbf{F}=\mathbf{R}$.
definition: volume of a box
If $v \in V$ and r_{1}, \ldots, r_{n} are positive numbers and e_{1}, \ldots, e_{n} is an orthonormal basis of V, then
$\operatorname{volume}\left(v+P\left(r_{1} e_{1}, \ldots, r_{n} e_{n}\right)\right)=r_{1} \times \cdots \times r_{n}$.
definition: volume
Suppose $\Omega \subset V$. Then the volume of Ω, denoted volume Ω, is approximately the sum of the volumes of a collection of disjoint boxes that approximate Ω.

Volume of this ball \approx sum of the volumes of the five boxes.

Example: Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is defined by

$$
T v=2\left\langle v, e_{1}\right\rangle e_{1}+\left\langle v, e_{2}\right\rangle e_{2},
$$

where e_{1}, e_{2} is the standard basis of \mathbf{R}^{2}.
T stretches by a factor of 2 along the e_{1} axis.
The ball gets mapped by T to the ellipsoid.
The five boxes in the top figure get mapped
 to boxes with twice the width and the same height. Hence each box in the top figure gets mapped to a box with twice the volume (area). The sum of the volumes of the five new boxes approximates the volume of the ellipsoid.

Thus T changes the volume of the ball by a
 factor of 2 .

volume changes by a factor of the product of the singular values

Suppose $T: V \rightarrow V$ is invertible and $\Omega \subset V$. Then
volume $T(\Omega)=($ product of singular values of $T)($ volume $\Omega)$.
Proof Suppose T has singular value decomposition

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{n}\left\langle v, e_{n}\right\rangle f_{n}
$$

where e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{n} are orthonormal bases of V. Approximate Ω by boxes of the form $v+P\left(r_{1} e_{1}, \ldots, r_{n} e_{n}\right)$, which have volume $r_{1} \times \cdots \times r_{n}$. The operator T maps each box $v+P\left(r_{1} e_{1}, \ldots, r_{n} e_{n}\right)$ onto the box $T v+\mathcal{P}\left(r_{1} s_{1} f_{1}, \ldots, r_{n} s_{n} f_{n}\right)$, which has volume $\left(s_{1} \times \cdots \times s_{n}\right)\left(r_{1} \times \cdots \times r_{n}\right)$.
Because T changes the volume of each box in a collection that approximates Ω by a factor of $s_{1} \times \cdots \times s_{n}$, the linear map T changes the volume of Ω by the same factor. $\boldsymbol{\square}$

volume via singular values

product of singular values of $T=|\operatorname{det} T|$

The product of the singular values of T equals $|\operatorname{det} T|$.
Proof By the polar decomposition, there is a unitary operator $S: V \rightarrow V$ such that

$$
T=S \sqrt{T^{*} T}
$$

Thus

$$
\begin{aligned}
|\operatorname{det} T| & =|\operatorname{det} S| \operatorname{det} \sqrt{T^{*} T} \\
& =\operatorname{det} \sqrt{T^{*} T} \\
& =\text { product of singular values of } T,
\end{aligned}
$$

as desired.

SVD formula for pseudoinverse

$T: V \rightarrow W$ is linear.
$\left.T\right|_{(\text {null } T)^{\perp}}$ is a one-to-one map of $(\operatorname{null} T)^{\perp}$ onto range T.

Let $P_{\text {range } T}$ denote the orthogonal projection of W onto range T.
definition: pseudoinverse, T^{\dagger}
The pseudoinverse $T^{\dagger}: W \rightarrow V$ of T is the linear map from W to V defined by

$$
T^{\dagger} w=\left(\left.T\right|_{(\operatorname{null} T)^{\perp}}\right)^{-1} P_{\text {range } T} w
$$

for $w \in W$.
Given $b \in W$, find $x \in V$ such that $T x=b$.

If T is invertible, $x=T^{-1} b$. But perhaps no solutions; perhaps ∞ many solutions.
pseudoinverse is best solution
Suppose $b \in W$.
(a) If $x \in V$, then

$$
\left\|T\left(T^{\dagger} b\right)-b\right\| \leq\|T x-b\|
$$

with equality if and only if $x \in T^{\dagger} b+\operatorname{null} T$.
(b) If $x \in T^{\dagger} b+\operatorname{null} T$, then

$$
\left\|T^{\dagger} b\right\| \leq\|x\|
$$

with equality if and only if $x=T^{\dagger} b$.

SVD formula for pseudoinverse

formula for pseudoinverse
Suppose s_{1}, \ldots, s_{m} are the positive eigenvalues of T. Suppose e_{1}, \ldots, e_{m} and f_{1}, \ldots, f_{m} are orthonormal lists in V and W such that

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{m}\left\langle v, e_{m}\right\rangle f_{m}
$$

for every $v \in V$. Then

$$
T^{\dagger} w=\frac{\left\langle w, f_{1}\right\rangle}{s_{1}} e_{1}+\cdots+\frac{\left\langle w, f_{m}\right\rangle}{s_{m}} e_{m}
$$

for every $w \in W$.

Sheldon Axler, Linear Algebra Done Right, fourth edition to be published in Springer's Undergraduate Texts in Mathematics series around December 2023.

Chapter 7 (Operators in Inner Product Spaces) contains the material on the singular value decomposition in Sections 7E and 7F. Chapter 7 is now freely and legally available on the book's website https://linear.axler.net.

This will be an Open Access book, meaning that the electronic version will be legally free to the world.

