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SVD poem

Singular value decomposition, a tool of great might,
A method for breaking down data with insight.
From matrices to vectors, it’s a subject that’s so bright,
A fundamental tool for solving many problems with great light.

Eigenvectors and eigenvalues, so intriguing to behold,
A way to understand the behavior of a matrix to unfold,
With SVD, we can analyze and comprehend,
A tool for understanding and solving complex systems to the end.

–written by ChatGPT with input “poem about singular value decomposition”
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review

F = R or F = C.

V and W are finite-dimensional inner product
spaces over F.

n = dimV.

T : V → W is a linear map.

definition: singular values

The singular values of T are the
nonnegative square roots of the
eigenvalues of T∗T, listed in
decreasing order, each included as
many times as its multiplicity.

Let s1 ≥ · · · ≥ sm denote the positive
singular values of T.

singular value decomposition

There exist orthonormal lists
e1, . . . , em in V and f1, . . . , fm in W
such that

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm
for every v ∈ V.
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norms of linear maps
Standard definition of ‖T‖:

‖T‖ = sup{‖Tv‖ : v ∈ V and ‖v‖ ≤ 1}.

Pedagogical problem:
Students may not be familiar with sup.
Replacing sup with max may not work
because students may not know that a
continuous function on a compact set has
a maximum.

Suppose e1, . . . , em and f1, . . . , fm are
orthonormal lists in V and W such that

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm
for all v ∈ V.

If v ∈ V and ‖v‖ ≤ 1 then

‖Tv‖2 = s1
2 |〈v, e1〉|2 + · · ·+ sm

2 |〈v, em〉|2

≤ s1
2
(
|〈v, e1〉|2 + · · ·+ |〈v, em〉|2

)
≤ s1

2 ‖v‖2

≤ s1
2,

and thus ‖Tv‖ ≤ s1.

Because Te1 = s1f1, we have

max{‖Tv‖ : v ∈ V and ‖v‖ ≤ 1} = s1.

Now we can define ‖T‖ by

‖T‖ = max{‖Tv‖ : v ∈ V and ‖v‖ ≤ 1}
= largest singular value of T.
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approximation by lower-dimensional linear maps
How can we best approximate T by linear
maps with lower-dimensional range?

Suppose T has singular value decomposition

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm.

Suppose k ∈ {1, . . . ,m − 1}. To approximate
T by linear maps whose range has
dimension at most k, throw away the terms

sk+1〈v, ek+1〉fk+1 + · · ·+ sm〈v, em〉fm,
leaving

s1〈v, e1〉f1 + · · ·+ sm〈v, ek〉fk.

Let Lk(V,W) denote the set of linear maps
S : V → W such that dim range S ≤ k.

best approximation by linear map
whose range has dimension ≤ k

Suppose

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm
is a singular value decomposition of T
and 1 ≤ k < m. Then

min{‖T − S‖ : S ∈ Lk(V,W)} = sk+1.

Furthermore, if Tk : V → W is defined
by

Tkv = s1〈v, e1〉f1 + · · ·+ sk〈v, ek〉fk
for v ∈ V, then dim range Tk ≤ k and
‖T − Tk‖ = sk+1.
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approximation by lower-dimensional linear maps

best approximation by linear map
whose range has dimension ≤ k

Suppose

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm
is a singular value decomposition of T
and 1 ≤ k < m. Then

min{‖T − S‖ : S ∈ Lk(V,W)} = sk+1.

Furthermore, if Tk : V → W is defined
by

Tkv = s1〈v, e1〉f1 + · · ·+ sk〈v, ek〉fk
for v ∈ V, then dim range Tk ≤ k and
‖T − Tk‖ = sk+1.

Proof Suppose S ∈ Lk(V,W). Hence
Se1, . . . , Sek+1 is linearly dependent. Thus
there exist a1, . . . , ak+1 ∈ F such that

a1Se1 + · · ·+ ak+1Sek+1 = 0

and |a1|2 + · · ·+ |ak+1|2 = 1. We have

‖(T − S)(a1e1 + · · ·+ ak+1ek+1)‖2

= ‖T(a1e1 + · · ·+ ak+1ek+1)‖2

= ‖s1a1f1 + · · ·+ sk+1ak+1fk+1‖2

= s1
2 |a1|2 + · · ·+ sk+1

2 |ak+1|2

≥ sk+1
2(|a1|2 + · · ·+ |ak+1|2

)
= sk+1

2.

Thus ‖T − S‖ ≥ sk+1.
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norm of restriction to subspace of dimension k

Let s1 ≥ · · · ≥ sn denote the singular values of T.

minimal restriction of T to subspace of dimension k

Suppose 1 ≤ k ≤ n. Then

min{‖T|U‖ : U is a subspace of V with dimU = k} = sn−k+1.
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approximation by isometries

best approximation by an isometry

Suppose dimW ≥ n. Let e1, . . . , en and f1, . . . , fn be orthonormal
bases of V and W such that

Tv = s1〈v, e1〉f1 + · · ·+ sn〈v, en〉fn
for all v ∈ V.
Define S : V → W by

Sv = 〈v, e1〉f1 + · · ·+ 〈v, en〉fn.
Then

(a) S is an isometry and ‖T − S‖ = max{|s1 − 1|, . . . , |sn − 1|};

(b) if E : V → W is an isometry, then ‖T − E‖ ≥ ‖T − S‖.
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polar decomposition
The polar decomposition of a complex
number z is

z = r eiθ = eiθr,

where eiθ eiθ = 1 and r = |z| =
√

z z ≥ 0.

A linear map S : V → V is called unitary if

S∗S = SS∗ = I.

Because V is finite-dimensional, if S : V → V
is linear then

S∗S = I ⇐⇒ SS∗ = I.

Thus an operator from V to V is unitary if and
only if it is an isometry.

If S : V → V is a positive operator, then√
S denotes the unique positive

operator on V such that
(√

S
)2

= S.

Suppose W = V and we have an SVD

Tv = s1〈v, e1〉f1 + . . .+ sn〈v, en〉fn.
Then

T∗v = s1〈v, f1〉e1 + . . .+ sn〈v, fn〉en.

Thus

T∗T v = s1
2〈v, e1〉e1 + . . .+ sn

2〈v, en〉en

and
√

T∗Tv = s1〈v, e1〉e1 + . . .+ sn〈v, en〉en.
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polar decomposition

polar decomposition

Suppose T : V → V is linear. Then there
exists a unitary operator S : V → V such
that

T = S
√

T∗T.

Proof Suppose we have an SVD

Tv = s1〈v, e1〉f1 + . . .+ sn〈v, en〉fn
for all v ∈ V. Define S : V → V by

Sv = 〈v, e1〉f1 + . . .+ 〈v, en〉fn.
Then S is an isometry and hence is unitary.

We have
Sek = fk

for k = 1, . . . , n and
√

T∗Tv = s1〈v, e1〉e1 + . . .+ sn〈v, en〉en.

Thus

S
(√

T∗Tv
)
= s1〈v, e1〉f1 + . . .+ sn〈v, en〉fn
= Tv.

Note that if T = S
√

T∗T where S is as
in the proof above, then S is a best
approximation to T among the unitary
operators.
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operators applied to ellipsoids

definition: ball, B(r)

The ball in V centered at 0 with radius 1,
denoted B, is defined by

B = {v ∈ V : ‖v‖ < 1}.

-1 1

-1

1

The ball B in R2.
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operators applied to ellipsoids

definition: ellipsoid, E(s1f1, . . . , snfn), principal axes

Suppose that f1, . . . , fn is an orthonormal basis of V and
s1, . . . , sn are positive numbers. The ellipsoid E(s1f1, . . . , snfn)
with principal axes s1f1, . . . , snfn is defined by

E(s1f1, . . . , snfn) =
{

v ∈ V :
|〈v, f1〉|2

s12
+ · · ·+ |〈v, fn〉|2

sn
2 < 1

}
.

-2 2

-1

1

The ellipsoid E(2f1, f2) in R2, where
f1, f2 is the standard basis of R2.

- 2 2

- 2

2

The ellipsoid E(2f1, f2) in R2, where
f1 =

(
1√
2
, 1√

2

)
and f2 =

(
− 1√

2
, 1√

2

)
.
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operators applied to ellipsoids

The ellipsoid E(4f1, 3f2, 2f3) in R3,
where f1, f2, f3 is the standard basis of R3.
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operators applied to ellipsoids

invertible operator takes ball to ellipsoid

Suppose T : V → V is invertible. Then T
maps the ball B in V onto an ellipsoid in V.

Proof Suppose T has SVD

Tv = s1〈v, e1〉f1 + · · ·+ sn〈v, en〉fn
for all v ∈ V. We will show that

T(B) = E(s1f1, . . . , snfn).

First suppose v ∈ B. Then

|〈Tv, f1〉|2

s12
+· · ·+ |〈Tv, fn〉|2

sn
2 = |〈v, e1〉|2+· · ·+|〈v, en〉|2 < 1.

Thus Tv ∈ E(s1f1, . . . , snfn), and hence
T(B) ⊂ E(s1f1, . . . , snfn).

To prove inclusion in the other direction,
suppose w ∈ E(s1f1, . . . , snfn).
Let

v =
〈w, f1〉

s1
e1 + · · ·+ 〈w, fn〉

sn
en.

Then ‖v‖ < 1; hence v ∈ B.
Because Tek = skfk, we have

Tv = 〈w, f1〉f1 + · · ·+ 〈w, fn〉fn
= w.

Thus T(B) ⊃ E(s1f1, . . . , snfn).
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operators applied to ellipsoids

invertible operator takes ellipsoids to ellipsoids

Suppose T : V → V is invertible and E is an
ellipsoid in V. Then T(E) is an ellipsoid in V.

Proof Let S : V → V be an invertible operator
such that E = S(B). Then

T(E) = T
(
S(B)

)
= (TS)(B).

By our previous result, the invertible linear
map TS maps the ball to an ellipsoid.
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operators applied to parallelepipeds

definition: P(v1, . . . , vn), parallelepiped

Suppose v1, . . . , vn is a basis of V. Let

P(v1, . . . , vn) =
{

a1v1 + · · ·+ anvn : a1, . . . , an ∈ (0, 1)
}
.

A parallelepiped is a set of the form v + P(v1, . . . , vn)
for some v ∈ V. The vectors v1, . . . , vn are called the
edges of this parallelepiped.

0.3 1.3 2.3

0.5

1.5

The parallelepiped

(0.3, 0.5) + P
(
(1, 0), (1, 1)

)
in R2.

A parallelepiped in R3.
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operators applied to parallelepipeds

invertible operator takes parallelepipeds to parallelepipeds

Suppose v ∈ V and v1, . . . , vn is a basis of V. Suppose
T : V → V is invertible. Then

T
(
v + P(v1, . . . , vn)

)
= Tv + P(Tv1, . . . , Tvn).

Proof Because T is invertible, the list Tv1, . . . , Tvn is a basis
of V. The linearity of T implies that

T(v + a1v1 + · · ·+ anvn) = Tv + a1Tv1 + · · ·+ anTvn

for all a1, . . . , an ∈ (0, 1). Thus

T
(
v + P(v1, . . . , vn)

)
= Tv + P(Tv1, . . . , Tvn),

as desired.
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operators applied to parallelepipeds

definition: box

A box in V is a set of the form

v + P(r1e1, . . . , rnen),

where v ∈ V and r1, . . . , rn are positive
numbers and e1, . . . , en is an orthonormal
basis of V.

1 2

1

2

The box

(1, 0) + P
(√

2 e1,
√

2 e2
)
,

where
e1 =

(
1√
2
, 1√

2

)
and e2 =

(
− 1√

2
, 1√

2

)
.

The box P(e1, 2e2, e3),
where e1, e2, e3 is the
standard basis of R3.



19

operators applied to parallelepipeds

1 2

1

2

0.3 1.3 2.3

0.5

1.5

boxes

parallelepipeds
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operators applied to parallelepipeds

each operator takes some boxes to boxes

Suppose T : V → V is invertible. Suppose T has singular value
decomposition

Tv = s1〈v, e1〉f1 + · · ·+ sn〈v, en〉fn,
where e1, . . . , en and f1, . . . , fn are orthonormal bases of V and the
equation above holds for all v ∈ V. Then T maps the box
v + P(r1e1, . . . , rnen) onto the box Tv + P(r1s1f1, . . . , rnsnfn)
for all positive numbers r1, . . . , rn and all v ∈ V.

Proof If a1, . . . , an ∈ (0, 1) and r1, . . . , rn are positive numbers and
v ∈ V, then

T(v + a1r1e1 + · · ·+ anrnen) = Tv + a1r1s1f1 + · · ·+ anrnsnfn.
Thus T

(
v + P(r1e1, . . . , rnen)

)
= Tv + P(r1s1f1, . . . , rnsnfn).
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volume via singular values
For this topic, assume F = R.

definition: volume of a box

If v ∈ V and r1, . . . , rn are positive
numbers and e1, . . . , en is an orthonormal
basis of V, then

volume
(
v+P(r1e1, . . . , rnen)

)
= r1×· · ·×rn.

definition: volume

Suppose Ω ⊂ V. Then the volume of Ω,
denoted volumeΩ, is approximately the
sum of the volumes of a collection of
disjoint boxes that approximate Ω.

Volume of this ball ≈ sum of the
volumes of the five boxes.
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volume via singular values
Example: Suppose T : R2 → R2 is defined by

Tv = 2〈v, e1〉e1 + 〈v, e2〉e2,

where e1, e2 is the standard basis of R2.
T stretches by a factor of 2 along the e1 axis.
The ball gets mapped by T to the ellipsoid.

The five boxes in the top figure get mapped
to boxes with twice the width and the same
height. Hence each box in the top figure gets
mapped to a box with twice the volume
(area). The sum of the volumes of the five
new boxes approximates the volume of the
ellipsoid.

Thus T changes the volume of the ball by a
factor of 2.
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volume via singular values

volume changes by a factor of the product of the singular values

Suppose T : V → V is invertible and Ω ⊂ V. Then

volumeT(Ω) = (product of singular values of T)(volumeΩ).

Proof Suppose T has singular value decomposition

Tv = s1〈v, e1〉f1 + · · ·+ sn〈v, en〉fn,
where e1, . . . , en and f1, . . . , fn are orthonormal bases of V.
Approximate Ω by boxes of the form v + P(r1e1, . . . , rnen), which
have volume r1 × · · · × rn. The operator T maps each box
v + P(r1e1, . . . , rnen) onto the box Tv + P(r1s1f1, . . . , rnsnfn), which
has volume (s1 × · · · × sn)(r1 × · · · × rn).
Because T changes the volume of each box in a collection that
approximates Ω by a factor of s1 × · · · × sn, the linear map T
changes the volume of Ω by the same factor.
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volume via singular values

product of singular values of T = |detT|

The product of the singular values of T equals |detT|.

Proof By the polar decomposition, there is a unitary
operator S : V → V such that

T = S
√

T∗T.

Thus

|detT| = |det S|det
√

T∗T

= det
√

T∗T

= product of singular values of T,

as desired.
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SVD formula for pseudoinverse
T : V → W is linear.

T|(null T)⊥ is a one-to-one map of (nullT)⊥

onto rangeT.

Let Prange T denote the orthogonal projection
of W onto rangeT.

definition: pseudoinverse, T†

The pseudoinverse T† : W → V of T is
the linear map from W to V defined by

T†w = (T|(null T)⊥)
−1Prange T w

for w ∈ W.

Given b ∈ W, find x ∈ V such that Tx = b.

If T is invertible, x = T−1b. But perhaps
no solutions; perhaps ∞ many solutions.

pseudoinverse is best solution

Suppose b ∈ W.
(a) If x ∈ V, then

‖T(T†b)− b‖ ≤ ‖Tx − b‖,
with equality if and only if
x ∈ T†b + nullT.

(b) If x ∈ T†b + nullT, then

‖T†b‖ ≤ ‖x‖,
with equality if and only if
x = T†b.
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SVD formula for pseudoinverse

formula for pseudoinverse

Suppose s1, . . . , sm are the positive eigenvalues of T.
Suppose e1, . . . , em and f1, . . . , fm are orthonormal lists
in V and W such that

Tv = s1〈v, e1〉f1 + · · ·+ sm〈v, em〉fm
for every v ∈ V. Then

T†w =
〈w, f1〉

s1
e1 + · · ·+ 〈w, fm〉

sm
em

for every w ∈ W.
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reference

Sheldon Axler, Linear Algebra Done Right, fourth edition to be
published in Springer’s Undergraduate Texts in Mathematics series
around December 2023.

Chapter 7 (Operators in Inner Product Spaces) contains the material
on the singular value decomposition in Sections 7E and 7F. Chapter 7
is now freely and legally available on the book’s website
https://linear.axler.net.

This will be an Open Access book, meaning that the electronic version
will be legally free to the world.


