The Volterra Operator

Joel H. Shapiro

Analysis Seminar
Portland State University
February 12, 2023

$$
V f(x)=\int_{0}^{x} f(t) d t
$$

Volterra's grasp,
Integral operator flows,
Chaos tamed with grace.

Haiku composed by ChatGPT

Setting: $L^{2}=$ all (a.e. equiv. classes of) Leb. measurable functions $f:[0,1] \rightarrow \mathbb{C}$ such that

$$
\|f\|^{2}:=\int_{0}^{1}|f(x)|^{2} d x<\infty
$$

L^{2} is a Hilbert space with inner product

$$
\begin{aligned}
& \langle f, g\rangle:=\int_{0}^{1} f(x) \overline{g(x)} d x \quad\left(f, g \in L^{2}\right) \\
& \therefore \quad\|f\|^{2}=\langle f, f\rangle \quad\left(f \in L^{2}\right)
\end{aligned}
$$

The Volterra Operator

$V f(x):=\int_{0}^{x} f(t) d t \quad\left(f \in L^{2}, 0 \leq x \leq 1\right)$
$V f$ SOLVES the initial value problem

$$
y^{\prime}=f(x) \text { a.e., } \quad y(0)=0
$$

Lemma. $\forall f \in L^{2} \quad \& \quad 0 \leq x_{1} \leq x_{2} \leq 1$:

$$
\left|V f\left(x_{2}\right)-V f\left(x_{1}\right)\right| \leq \sqrt{x_{2}-x_{1}}\|f\|
$$

$$
\begin{aligned}
& \text { Proof. }\left|V f\left(x_{2}\right)-V f\left(x_{1}\right)\right|=\left|\int_{x_{1}}^{x_{2}} f(t) d t\right| \\
& =\left|\left\langle\chi_{\left[x_{1}, x_{2}\right]}, f\right\rangle\right| \leq\left\|\chi_{\left[x_{1}, x_{2}\right]}\right\|\|f\| \\
& =\sqrt{x_{2}-x_{1}}\|f\|
\end{aligned}
$$

Corollary. $V\left(L^{2}\right) \subsetneq C([0,1]) \subsetneq L^{2}$

Setting: $L^{2}=$ all (a.e. equiv. classes of) Leb. measurable functions $f:[0,1] \rightarrow \mathbb{C}$ such that

$$
\|f\|^{2}:=\int_{0}^{1}|f(x)|^{2} d x<\infty
$$

L^{2} is a Hilbert space with inner product

$$
\begin{aligned}
& \langle f, g\rangle:=\int_{0}^{1} f(x) \overline{g(x)} d x \quad\left(f, g \in L^{2}\right) \\
& \therefore \quad\|f\|^{2}=\langle f, f\rangle \quad\left(f \in L^{2}\right)
\end{aligned}
$$

The Volterra Operator

$V f(x):=\int_{0}^{x} f(t) d t \quad\left(f \in L^{2}, 0 \leq x \leq 1\right)$

Lemma. $\forall f \in L^{2} \quad \& \quad 0 \leq x_{2} \leq x_{2} \leq 1$:

$$
\left|V f\left(x_{2}\right)-V f\left(x_{1}\right)\right| \leq \sqrt{x_{2}-x_{1}}\|f\|
$$

Corollary. $V\left(L^{2}\right) \subsetneq C([0,1]) \subsetneq L^{2}$

Prop. [V a bounded operator on L^{2}]

$$
\|V f\| \leq \frac{1}{\sqrt{2}}\|f\| \quad\left(f \in L^{2}\right)
$$

Proof. For $f \in L^{2}$ and $0 \leq x \leq 1$:

$$
\begin{aligned}
|V f(x)| & \leq \sqrt{x}\|f\| \\
\therefore \quad\|V f\|^{2} & \leq\left(\int_{0}^{1} x d x\right)\|f\|^{2}=\frac{1}{2}\|f\|^{2}
\end{aligned}
$$

Corollary. $\|V\|:=\sup _{\|f\| \leq 1}\|V f\| \leq \frac{1}{\sqrt{2}}$.

The Volterra Operator

$$
V f(x):=\int_{0}^{x} f(t) d t \quad\left(f \in L^{2}\right)
$$

So far we know:
(a) V is a bounded operator on L^{2}, with operator norm $\|V\| \leq \frac{1}{\sqrt{2}}$.
(b) $V\left(L^{2}\right) \subsetneq C([0,1]) \subsetneq L^{2}$.

Prop. V is $1-1$.
Proof. Suppose $V f=0$ for some $f \in L^{2}$.
$\therefore \quad 0 \underbrace{=}_{\forall x} \frac{d}{d x} V f(x) \underbrace{=}_{\text {a.e. } x} f(x)$.
$\therefore f=0$ a.e. on $[0,1]$, i.e. $f=0$ in L^{2}. Conclude: V is 1-1.

Theorem. V has no eigenvalues (!)
Proof. Suppose:

$$
\begin{equation*}
V f=\lambda f \tag{*}
\end{equation*}
$$

for some $\lambda \in \mathbb{C}$ and $f \in L^{2} \backslash\{0\}$
Then: $\lambda \neq 0$ (since V is $1-1$).
Observe: $\operatorname{By}(*)($ and $\lambda \neq 0)$ we know $f \in C([0,1])$, so can diff both sides of $(*)$ and use the Fund'I Thm of Integral Calculus to obtain:

$$
\begin{equation*}
f=\lambda f^{\prime}, \text { so } f(x)=f(0) e^{x / \lambda} \text { on }[0,1] \tag{!!}
\end{equation*}
$$

But by $(*): \quad \lambda f(0)=V f(0)=0$
Conclude: $f=0$, a contradiction.

$$
V f(x):=\int_{0}^{x} f(t) d t \quad\left(f \in L^{2}\right)
$$

So far, on L^{2} :
(a) V is a bounded operator, with
(b) $\|V\| \leq \frac{1}{\sqrt{2}}$.
(c) V is one-to-one on L^{2}.
(d) V has no eigenvalues.

Definition [Adjoint of V]. The linear map V^{*} on L^{2} defined by:
$\left(^{*}\right) \quad\left\langle f, V^{*} g\right\rangle:=\langle V f, g\rangle \quad\left(f, g \in L^{2}\right)$.

What does this mean?

Write $\Lambda_{g}(f):=\langle f, g\rangle$.
Then Λ_{g} a bounded linear functional on L^{2} ... with $\left\|\Lambda_{g}\right\|=\|g\|$

So (*) becomes:

$$
\Lambda_{g}(V f)=\Lambda_{V^{*} g}(f)
$$

That is:

$$
\Lambda_{g} \circ V=V^{*}\left(\Lambda_{g}\right)
$$

i.e., $\quad V^{*}$ maps the bndd lin fnl Λ on L^{2} to the bndd lin fnl $\Lambda \circ V$.

$$
V f(x):=\int_{0}^{x} f(t) d t \quad\left(f \in L^{2}\right)
$$

So far, we've shown that on L^{2} :
(a) V is a bounded operator, with
(b) $\|V\| \leq \frac{1}{\sqrt{2}}$
(c) V is one-to-one.
(d) V has no eigenvalues.
(e) We've defined V^{*} on L^{2} by:

$$
\langle V f, g\rangle:=\left\langle f, V^{*} g\right\rangle
$$

Theorem. For $g \in L^{2}$ and $0 \leq x \leq 1$:

$$
V^{*} g(x):=\int_{x}^{1} g(t) d t
$$

Proof. Fix $f, g \in L^{2}$. By definition:

$$
\begin{aligned}
\left\langle f, V^{*} g\right\rangle & =\langle V f, g\rangle=\int_{0}^{1}(V f)(x) \overline{g(x)} d x \\
& =\int_{x=0}^{1}\left(\int_{y=0}^{x} f(y) d y\right) \overline{g(x)} d x \\
& =\iint_{\{0 \leq y \leq x\}} f(y) \overline{g(x)} d y d x \\
& =\int_{y=0}^{1} f(y) \overline{\left(\int_{x=y}^{1} g(x) d x\right)} d y \\
& =\langle f,(\cdot)\rangle
\end{aligned}
$$

$$
V f(x):=\int_{0}^{x} f(t) d t \quad\left(f \in L^{2}\right)
$$

So far: we have proved that on L^{2} :
(a) V is a compact operator.
(b) V is one-to-one (but not "onto").
(c) V has no eigenvalues.
(d) $\|V\| \leq \frac{1}{\sqrt{2}}$
(e) $\langle V f, g\rangle=\left\langle f, V^{*} g\right\rangle \quad$ (defn. of $\left.V^{*}\right)$
(f) $\quad V^{*} g(x)=\int_{x}^{1} g(t) d t \quad(0 \leq x \leq 1)$

Exercise. V^{*} is unitarily equivalent to V.

Prop. $\quad \frac{2}{\pi} \leq\|V\| \leq \frac{1}{\sqrt{2}}$
Proof (of " \leq "). For $w(x):=\cos \left(\frac{\pi}{2} x\right)$:
(**) $\quad V w(x)=\frac{2}{\pi} \sin \left(\frac{\pi}{2} x\right)$,
$\therefore \quad\|V w\|=\frac{2}{\pi}\|w\|$.

Prop. The function $w(x)=\cos \left(\frac{\pi}{2} x\right)$ is an eigenfunction of $V^{*} V$:

$$
\left(V^{*} V\right) w=\left(\frac{2}{\pi}\right)^{2} w
$$

Proof. Apply V^{*} to both sides of $\left({ }^{* *}\right)$:

$$
\left(V^{*} V w\right)(x)=\left(\frac{2}{\pi}\right)^{2} \underbrace{\cos \left(\frac{\pi}{2} x\right)}_{=w(x)}
$$

$$
V f(x):=\int_{0}^{x} f(t) d t \quad\left(f \in L^{2}\right)
$$

So far: we have proved that on L^{2} :
(a) V is a bounded operator on L^{2}.
(b) V is one-to-one (but not "onto").
(c) V has no eigenvalues.
(d) $\frac{2}{\pi} \leq\|V\| \leq \frac{1}{\sqrt{2}}$
(e) $\quad V^{*} g(x)=\int_{x}^{1} g(t) d t \quad(0 \leq x \leq 1)$
(f) $\quad\left(V^{*} V\right) \cos \left(\frac{\pi}{2} \cdot\right)=\left(\frac{2}{\pi}\right)^{2} \cos \left(\frac{\pi}{2} \cdot\right)$

Theorem. $\|V\|=\frac{2}{\pi}$
Proof. $w(x):=\cos \left(\frac{\pi}{2} x\right) \geq 0$ on $[0,1]$.
Pointwise est. For $f \in L^{2} \& 0 \leq x \leq 1$:

$$
\begin{aligned}
|(V f)(x)| & \leq \int_{0}^{x}|f(t)| d t=\int_{0}^{x} \frac{|f(t)|}{\sqrt{w(t)}} \sqrt{w(t)} d t \\
& \leq\left(\int_{0}^{x} \frac{|f(t)|^{2}}{w(t)} d t\right)^{1 / 2}(\underbrace{\int_{0}^{x} w(t) d t}_{(V w)(x)})^{1 / 2} \\
\therefore\|V f\|^{2} & =\int_{0}^{1}|V f(x)|^{2} d x \\
& \leq \int_{x=0}^{1}\left(\int_{t=0}^{x} \frac{|f(t)|^{2}}{w(t)} d t\right)(V w)(x) d x \\
= & \int_{t=0}^{1}(\underbrace{\int_{x=t}^{1}(V w)(x) d x}_{\left(V^{*} V w\right)(t)=\left(\frac{2}{\pi}\right)^{2} w(t)}) \frac{|f(t)|^{2}}{w(t)} d t \\
& =\left(\frac{2}{\pi}\right)^{2}\|f\|^{2} .
\end{aligned}
$$

Summing up

So far: for $f \in L^{2}$ and $0 \leq x \leq 1$:
$(V f)(x):=\int_{0}^{x} f$ \& $\left(V^{*} f\right)(x):=\int_{x}^{1} f$
We have proved that on L^{2} :
$\left.{ }^{*}\right) V$ and V^{*} are a bounded operators
$\left.{ }^{*}\right) V \& V^{*}$ are one-to-one (not "onto").
$\left.{ }^{*}\right) V$ and V^{*} have no eigenvalues.
$\left(^{*}\right)\left(\frac{2}{\pi}\right)^{2}$ an eigenvalue of $V^{*} V$, with eigenvector $\cos \left(\frac{\pi}{2} x\right)$
$\left.{ }^{*}\right)\|V\|=\frac{2}{\pi}$.

We have learned: In ∞-dim'l Hilbert space, bounded operators:
(*) May be one-to-one, but not onto
$\left.{ }^{*}\right)$ Need not have eigenvalues
(*) Operator norms may not be obvious; their computation may not be easy.
Next Time we'll find the SVD of V by:
$\left(^{*}\right)$ Proving V is a compact operator on L^{2}, so $V^{*} V$ is a positive compact operator.
(*) Finding the Spectral repn. of $V^{*} V$, hence that of $|V|:=\sqrt{V^{*} V}$

In addition, we'll find a "closed-form" repn. of $|V|$ as an integral operator.

