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V f (x) =

󰁝 x

0
f (t) dt

Volterra’s grasp,

Integral operator flows,

Chaos tamed with grace.

Haiku composed by ChatGPT



Introduction

Setting: L2 = all (a.e. equiv. classes of)
Leb. measurable functions f : [0, 1] → C
such that

󰀂f󰀂2 :=

󰁝 1

0

|f(x)|2dx < ∞

L2 is a Hilbert space with inner product

〈f, g〉 :=
󰁝 1

0

f(x)g(x) dx (f, g ∈ L2)

∴ 󰀂f󰀂2 = 〈f, f〉 (f ∈ L2)

The Volterra Operator

V f(x) :=

󰁝 x

0

f(t) dt (f ∈ L2, 0 ≤ x ≤ 1)

V f solves the initial value problem

y′ = f(x) a.e., y(0) = 0.

Lemma. ∀f ∈ L2 & 0 ≤ x1 ≤ x2 ≤ 1:

|V f(x2)− V f(x1)| ≤
√
x2 − x1 󰀂f󰀂

Proof. |V f(x2)− V f(x1)| =
󰀏󰀏󰀏󰀏
󰁝 x2

x1

f(t) dt

󰀏󰀏󰀏󰀏

= |〈χ[x1,x2], f〉| ≤ 󰀂χ[x1,x2]󰀂 󰀂f󰀂

=
√
x2 − x1 󰀂f󰀂

Corollary. V (L2) ⊊ C([0, 1]) ⊊ L2



V (L2)

Setting: L2 = all (a.e. equiv. classes of)
Leb. measurable functions f : [0, 1] → C
such that

󰀂f󰀂2 :=

󰁝 1

0

|f(x)|2dx < ∞

L2 is a Hilbert space with inner product

〈f, g〉 :=
󰁝 1

0

f(x)g(x) dx (f, g ∈ L2)

∴ 󰀂f󰀂2 = 〈f, f〉 (f ∈ L2)

The Volterra Operator

V f(x) :=

󰁝 x

0

f(t) dt (f ∈ L2, 0 ≤ x ≤ 1)

Lemma. ∀f ∈ L2 & 0 ≤ x2 ≤ x2 ≤ 1:

|V f(x2)− V f(x1)| ≤
√
x2 − x1 󰀂f󰀂

Corollary. V (L2) ⊊ C([0, 1]) ⊊ L2

Prop. [V a bounded operator on L2]

󰀂V f󰀂 ≤ 1√
2
󰀂f󰀂 (f ∈ L2)

Proof. For f ∈ L2 and 0 ≤ x ≤ 1:

|V f(x)| ≤
√
x 󰀂f󰀂

∴ 󰀂V f󰀂2 ≤
󰀓󰁝 1

0

x dx
󰀔
󰀂f󰀂2 =

1

2
󰀂f󰀂2

Corollary. 󰀂V 󰀂 := sup
󰀂f󰀂≤1

󰀂V f󰀂 ≤ 1√
2
.



Fundamentals

The Volterra Operator

V f(x) :=

󰁝 x

0

f(t) dt (f ∈ L2)

So far we know:

(a) V is a bounded operator on L2, with
operator norm 󰀂V 󰀂 ≤ 1√

2
.

(b) V (L2) ⊊ C([0, 1]) ⊊ L2.

Prop. V is 1-1.

Proof. Suppose V f = 0 for some f ∈ L2.

∴ 0 =󰁿󰁾󰁽󰂀
∀x

d
dx

V f(x) =󰁿󰁾󰁽󰂀
a.e.x

f(x).

∴ f = 0 a.e. on [0, 1], i.e. f = 0 in L2.

Conclude: V is 1-1.

Theorem. V has no eigenvalues (!)

Proof. Suppose:

(*) V f = λf

for some λ ∈ C and f ∈ L2\{0}

Then: λ ∕= 0 (since V is 1-1).

Observe: By (*) (and λ ∕= 0) we know
f ∈ C([0, 1]), so can diff both sides of (*)
and use the Fund’l Thm of Integral Calculus
to obtain:

f = λf ′, so f(x) = f(0)ex/λ on [0, 1].

But by (*): λf(0) = V f(0) = 0 (!!)

Conclude: f = 0, a contradiction.



Adjoint

V f(x) :=

󰁝 x

0

f(t) dt (f ∈ L2)

So far, on L2:

(a) V is a bounded operator, with

(b) 󰀂V 󰀂 ≤ 1√
2
.

(c) V is one-to-one on L2.

(d) V has no eigenvalues .

Definition [Adjoint of V ]. The linear map
V ∗ on L2 defined by:

(*) 〈f, V ∗g〉 := 〈V f, g〉 (f, g ∈ L2).

What does this mean?

Write Λg(f) := 〈f, g〉.

Then Λg a bounded linear functional on L2

... with 󰀂Λg󰀂 = 󰀂g󰀂

So (*) becomes:

Λg(V f) = ΛV ∗g(f)

That is:

Λg ◦ V = V ∗(Λg)

i.e., V ∗ maps the bndd lin fnl Λ on L2

to the bndd lin fnl Λ ◦ V .



Adjoint

V f(x) :=

󰁝 x

0

f(t) dt (f ∈ L2)

So far, we’ve shown that on L2:

(a) V is a bounded operator, with

(b) 󰀂V 󰀂 ≤ 1√
2

(c) V is one-to-one.

(d) V has no eigenvalues .

(e) We’ve defined V ∗ on L2 by:

〈V f, g〉 := 〈f, V ∗g〉

Theorem. For g ∈ L2 and 0 ≤ x ≤ 1:

V ∗g(x) :=

󰁝 1

x

g(t) dt

Proof. Fix f, g ∈ L2. By definition:

〈f, V ∗g〉 = 〈V f, g〉 =
󰁝 1

0

(V f)(x) g(x) dx

=

󰁝 1

x=0

󰀕󰁝 x

y=0

f(y) dy

󰀖
g(x) dx

=

󰁝 󰁝

{0≤y≤x}
f(y)g(x) dy dx

=

󰁝 1

y=0

f(y)

󰀕󰁝 1

x=y

g(x) dx

󰀖
dy

= 〈 f , ( ·) 〉



The Norm

V f(x) :=

󰁝 x

0

f(t) dt (f ∈ L2),

So far: we have proved that on L2:

(a) V is a compact operator.

(b) V is one-to-one (but not “onto”).

(c) V has no eigenvalues.

(d) 󰀂V 󰀂 ≤ 1√
2

(e) 〈V f, g〉 = 〈f, V ∗g〉 (defn. of V ∗)

(f) V ∗g(x) =

󰁝 1

x

g(t) dt (0 ≤ x ≤ 1)

Exercise. V ∗ is unitarily equivalent to V .

Prop. 2
π ≤ 󰀂V 󰀂 ≤ 1√

2

Proof (of “≤”). For w(x) := cos(π
2
x):

(**) V w(x) = 2
π
sin(π

2
x),

∴ 󰀂V w󰀂 = 2
π
󰀂w󰀂.

Prop. The function w(x) = cos(π2 x) is an
eigenfunction of V ∗V :

(V ∗V )w =
󰀃
2
π

󰀄2
w

Proof. Apply V ∗ to both sides of (**):

(V ∗V w)(x) =
󰀓 2

π

󰀔2

cos
󰀃π
2
x
󰀄

󰁿 󰁾󰁽 󰂀
=w(x)



The Norm

V f(x) :=

󰁝 x

0

f(t) dt (f ∈ L2),

So far: we have proved that on L2:

(a) V is a bounded operator on L2.

(b) V is one-to-one (but not “onto”).

(c) V has no eigenvalues.

(d) 2
π ≤ 󰀂V 󰀂 ≤ 1√

2

(e) V ∗g(x) =

󰁝 1

x

g(t) dt (0 ≤ x ≤ 1)

(f) (V ∗V ) cos(π2 ·) =
󰀃
2
π

󰀄2
cos(π2 ·)

Theorem. 󰀂V 󰀂 = 2
π

Proof. w(x) := cos(π
2
x) ≥ 0 on [0, 1].

Pointwise est. For f ∈ L2 & 0 ≤ x ≤ 1:

|(V f)(x)| ≤
󰁝 x

0
|f(t)| dt =

󰁝 x

0

|f(t)|
󰁳

w(t)

󰁳
w(t) dt

≤
󰀕󰁝 x

0

|f(t)|2

w(t)
dt

󰀖1/2 󰀓󰁝 x

0
w(t) dt

󰁿 󰁾󰁽 󰂀
(V w)(x)

󰀔1/2

∴ 󰀂V f󰀂2 =

󰁝 1

0
|V f(x)|2 dx

≤
󰁝 1

x=0

󰀕󰁝 x

t=0

|f(t)|2

w(t)
dt

󰀖
(V w)(x) dx

=

󰁝 1

t=0

󰀓 󰁝 1

x=t
(V w)(x) dx

󰁿 󰁾󰁽 󰂀
(V ∗V w)(t)=( 2

π
)2w(t)

󰀔 |f(t)|2

w(t)
dt

=
󰀃
2
π

󰀄2󰀂f󰀂2.



Summing up

So far: for f ∈ L2 and 0 ≤ x ≤ 1:

(V f)(x) :=

󰁝 x

0

f & (V ∗f)(x) :=

󰁝 1

x

f

We have proved that on L2:

(*) V and V ∗ are a bounded operators

(*) V & V ∗ are one-to-one (not “onto”).

(*) V and V ∗ have no eigenvalues.

(*)
󰀃
2
π

󰀄2
an eigenvalue of V ∗V ,

with eigenvector cos
󰀃
π
2x

󰀄

(*) 󰀂V 󰀂 = 2
π .

We have learned: In ∞-dim’l Hilbert
space, bounded operators:

(*) May be one-to-one, but not onto

(*) Need not have eigenvalues

(*) Operator norms may not be obvious;

their computation may not be easy.

Next Time we’ll find the SVD of V by:

(*) Proving V is a compact operator on L2,
so V ∗V is a positive compact operator.

(*) Finding the Spectral repn. of V ∗V ,
hence that of |V | :=

√
V ∗V

In addition, we’ll find a “closed-form”
repn. of |V | as an integral operator.


