The Volterra Operator

Joel H. Shapiro

Analysis Seminar Portland State University February 12, 2023

$$Vf(x) = \int_0^x f(t) \, dt$$

Volterra's grasp, Integral operator flows, Chaos tamed with grace.

Haiku composed by ChatGPT

Introduction

Setting: $L^2 = \text{all (a.e. equiv. classes of)}$ Leb. measurable functions $f: [0,1] \to \mathbb{C}$ such that

$$\|f\|^2 := \int_0^1 |f(x)|^2 dx < \infty$$

 L^2 is a *Hilbert space* with inner product

$$\langle f, g \rangle := \int_0^1 f(x) \overline{g(x)} \, dx \qquad (f, g \in L^2)$$

$$\therefore \qquad \|f\|^2 = \langle f, f \rangle \qquad (f \in L^2)$$

The Volterra Operator

$$Vf(x) := \int_0^x f(t) dt \quad (f \in L^2, \ 0 \le x \le 1)$$

Vf solves the initial value problem $y^{\prime}=f(x) \text{ a.e., } y(0)=0.$

Lemma. $\forall f \in L^2 \& 0 \le x_1 \le x_2 \le 1$: $|Vf(x_2) - Vf(x_1)| \le \sqrt{x_2 - x_1} ||f||$

Proof.
$$|Vf(x_2) - Vf(x_1)| = \left| \int_{x_1}^{x_2} f(t) dt \right|$$

= $|\langle \chi_{[x_1, x_2]}, f \rangle| \le ||\chi_{[x_1, x_2]}|| ||f||$
= $\sqrt{x_2 - x_1} ||f||$

Corollary. $V(L^2) \subsetneq C([0,1]) \subsetneq L^2$

Setting: $L^2 = \text{all (a.e. equiv. classes of)}$ Leb. measurable functions $f: [0,1] \to \mathbb{C}$ such that

$$||f||^2 := \int_0^1 |f(x)|^2 dx < \infty$$

 L^2 is a *Hilbert space* with inner product

$$\langle f, g \rangle := \int_0^1 f(x) \overline{g(x)} \, dx \qquad (f, g \in L^2)$$

$$\therefore \qquad \|f\|^2 = \langle f, f \rangle \qquad (f \in L^2)$$

The Volterra Operator

$$Vf(x) := \int_0^x f(t) dt \quad (f \in L^2, \ 0 \le x \le 1)$$

Lemma. $\forall f \in L^2 \& 0 \le x_2 \le x_2 \le 1$: $|Vf(x_2) - Vf(x_1)| \le \sqrt{x_2 - x_1} ||f||$ Corollary. $V(L^2) \subsetneq C([0, 1]) \subsetneq L^2$

Prop. [Va bounded operator on L^2] $||Vf|| \le \frac{1}{\sqrt{2}} ||f|| \quad (f \in L^2)$ *Proof.* For $f \in L^2$ and $0 \le x \le 1$: $|Vf(x)| < \sqrt{x} ||f||$ $\therefore \|Vf\|^2 \le \left(\int_0^1 x \, dx\right) \|f\|^2 = \frac{1}{2} \|f\|^2 \square$ **Corollary.** $||V|| := \sup_{\|f\| \le 1} ||Vf|| \le \frac{1}{\sqrt{2}}.$

Fundamentals

The Volterra Operator

$$Vf(x) := \int_0^x f(t) \, dt \qquad (f \in L^2)$$

So far we know:

(a) V is a bounded operator on L^2 , with operator norm $||V|| \leq \frac{1}{\sqrt{2}}$. (b) $V(L^2) \subsetneq C([0,1]) \subsetneq L^2$.

Prop. *V* is 1-1.

Proof. Suppose
$$Vf = 0$$
 for some $f \in L^2$.
 $\therefore \quad 0 \underbrace{=}_{\forall x} \frac{d}{dx} Vf(x) \underbrace{=}_{\text{a.e.} x} f(x).$
 $\therefore \quad f = 0$ a.e. on [0, 1], i.e. $f = 0$ in L^2 .
Conclude: V is 1-1.

Theorem. V has no eigenvalues (!) *Proof.* Suppose: (*) $Vf = \lambda f$ for some $\lambda \in \mathbb{C}$ and $f \in L^2 \setminus \{0\}$ Then: $\lambda \neq 0$ (since V is 1-1). Observe: By (*) (and $\lambda \neq 0$) we know $f \in C([0, 1])$, so can diff both sides of (*) and use the Fund'l Thm of Integral Calculus to obtain:

$$f=\lambda f'$$
, so $f(x)=f(0)e^{x/\lambda}$ on $[0,1].$

But by (*): $\lambda f(0) = V f(0) = 0$ (!!)

CONCLUDE: f = 0, a contradiction.

Adjoint

$$Vf(x):=\int_0^x f(t)\,dt \quad \ (f\in L^2)$$

So far, on L^2 :

(a) V is a bounded operator, with (b) $||V|| \leq \frac{1}{\sqrt{2}}$. (c) V is one-to-one on L^2 .

(d) V has no eigenvalues .

Definition [Adjoint of V]. The linear map V^* on L^2 defined by:

(*)
$$\langle f, V^*g \rangle := \langle Vf, g \rangle \quad (f, g \in L^2).$$

WHAT DOES THIS MEAN? Write $\Lambda_g(f) := \langle f, g \rangle$.

Then Λ_g a bounded linear functional on L^2 ... with $\|\Lambda_g\|=\|g\|$

So (*) becomes:

 $\Lambda_g(Vf) = \Lambda_{V^*g}(f)$

That is:

$$\Lambda_g \circ V = V^*(\Lambda_g)$$

i.e.,
$$V^*$$
 maps the bndd lin fnl Λ on L^2
to the bndd lin fnl $\Lambda \circ V$.

Adjoint

$$Vf(x):=\int_0^x f(t)\,dt \quad \ (f\in L^2)$$

So far, we've shown that on L^2 : (a) V is a bounded operator, with (b) $||V|| \le \frac{1}{\sqrt{2}}$

(c) V is one-to-one.

(d) V has no eigenvalues .

(e) We've defined V^* on L^2 by:

 $\langle Vf,\,g\rangle:=\langle f,\,V^*g\rangle$

Theorem. For $q \in L^2$ and 0 < x < 1: $V^*g(x) := \int^1 g(t) \, dt$ *Proof.* Fix $f, q \in L^2$. By definition: $\langle f, V^*g \rangle = \langle Vf, g \rangle = \int_0^1 (Vf)(x) \overline{g(x)} dx$ $= \int_{--0}^{1} \left(\int_{x=0}^{x} f(y) \, dy \right) \overline{g(x)} \, dx$ $=\int\int\int_{\{0\leq y\leq z\}}f(y)\overline{g(x)}\,dy\,dx$ $=\int_{-\infty}^{1}f(y)\left(\int_{-\infty}^{1}g(x)\,dx\right)dy$ $= \langle f, (\cdot) \rangle$

The Norm

$$Vf(x):=\int_0^x f(t)\,dt \quad \ (f\in L^2),$$

So far: we have proved that on L^2 :

(a) V is a compact operator.

(b) V is one-to-one (but not "onto").

(c) V has no eigenvalues.

(d)
$$\|V\| \leq \frac{1}{\sqrt{2}}$$

(e)
$$\langle Vf,\,g
angle=\langle f,\,V^*g
angle$$
 (defn. of V^*)

(f)
$$V^*g(x) = \int_x^1 g(t) dt \quad (0 \le x \le 1)$$

Exercise. V^* is unitarily equivalent to V.

Prop. $\frac{2}{\pi} \le ||V|| \le \frac{1}{\sqrt{2}}$ *Proof* (of "≤"). For $w(x) := \cos(\frac{\pi}{2}x)$: (**) $Vw(x) = \frac{2}{\pi}\sin(\frac{\pi}{2}x)$, $\therefore ||Vw|| = \frac{2}{\pi}||w||$.

Prop. The function $w(x) = \cos(\frac{\pi}{2}x)$ is an *eigenfunction* of V^*V :

$$(V^*V)w = \left(\frac{2}{\pi}\right)^2 w$$

Proof. Apply V^* to both sides of (**):

$$(V^*Vw)(x) = \left(\frac{2}{\pi}\right)^2 \underbrace{\cos\left(\frac{\pi}{2}x\right)}_{=w(x)} \qquad \Box$$

The Norm

$$Vf(x):=\int_0^x f(t)\,dt \quad \ (f\in L^2),$$

So far: we have proved that on L^2 :

(a) V is a bounded operator on L^2 .

(b) V is one-to-one (but not "onto").

(c) V has no eigenvalues.

(d)
$$\frac{2}{\pi} \le ||V|| \le \frac{1}{\sqrt{2}}$$

(e) $V^*g(x) = \int_x^1 g(t) \, dt \quad (0 \le x \le 1)$
(f) $(V^*V) \cos(\frac{\pi}{2} \cdot) = (\frac{2}{\pi})^2 \cos(\frac{\pi}{2} \cdot)$

Theorem. $||V|| = \frac{2}{2}$ *Proof.* $w(x) := \cos(\frac{\pi}{2}x) \ge 0$ on [0, 1]. POINTWISE EST. For $f \in L^2$ & 0 < x < 1: $|(Vf)(x)| \le \int_0^x |f(t)| dt = \int_0^x \frac{|f(t)|}{\sqrt{w(t)}} \sqrt{w(t)} dt$ $\leq \left(\int_0^x \frac{|f(t)|^2}{w(t)} \, dt\right)^{1/2} \, \left(\int_0^x w(t) \, dt\right)^{1/2}$ (Vw)(x) $\therefore ||Vf||^2 = \int_0^1 |Vf(x)|^2 dx$ $\leq \int_{x=0}^{1} \left(\int_{t=0}^{x} \frac{|f(t)|^2}{w(t)} dt \right) (Vw)(x) dx$ $= \int_{t=0}^{1} \left(\int_{x=t}^{1} (Vw)(x) \, dx \right) \frac{|f(t)|^2}{w(t)} \, dt$ $(V^*Vw)(t) = (\frac{2}{\pi})^2 w(t)$ $= \left(\frac{2}{\pi}\right)^2 ||f||^2.$

Summing up

So far: for $f \in L^2$ and $0 \le x \le 1$: $(Vf)(x) := \int_0^x f \& (V^*f)(x) := \int_x^1 f$

WE HAVE PROVED that on L^2 :

- (*) V and V^* are a bounded operators
- (*) $V \& V^*$ are one-to-one (not "onto").
- (*) V and V^* have no eigenvalues.
- (*) $\left(\frac{2}{\pi}\right)^2$ an eigenvalue of V^*V , with eigenvector $\cos\left(\frac{\pi}{2}x\right)$ (*) $\|V\| = \frac{2}{\pi}$.

We have learned: In ∞ -dim'l Hilbert space, bounded operators:

- (*) May be one-to-one, but not onto
- (*) Need not have eigenvalues
- (*) Operator norms may not be obvious; their computation may not be easy.

Next Time we'll find the SVD of V by:

(*) Proving V is a *compact* operator on L^2 , so V^*V is a *positive* compact operator.

(*) Finding the Spectral repn. of V^*V , hence that of $|V|:=\sqrt{V^*V}$

IN ADDITION, we'll find a "closed-form" repn. of $\left|V\right|$ as an integral operator.