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(V f )(x) =

 x

0

f (t) dt



Introduction

Last time: for f ∈ L2 and 0 ≤ x ≤ 1 we:

◦ Defined: (V f)(x) :=
 x

0
f(t) dt

V ∗ on L2 by: 〈f, V ∗g〉 := 〈V f, g〉

◦ Proved: (V ∗f)(x) :=
 1

x
f(t) dt

◦ Showed: V and V ∗ are

bounded operators,

one-to-one (not “onto”),

have no eigenvalues.

◦ Observed:

2
π

2
an eigenvalue of V ∗V ,

with eigenvector cos

π
2x



◦ Proved: V  := sup
f≤1

V f = 2
π .

Today: we’ll derive:

The Volterra SVD. There exist:

(a) o.n. bases (en)
∞
1 and (hn)

∞
1 for L2, &

(b) a positive sequence sn ↘ 0, such that

V f =

∞

n=1

sn〈f, en〉hn (f ∈ L2),

the series converging in the norm of L2.

In talks on SVD by Jim [4] and Sheldon [2], we

saw that: s1 = V , and more generally, sn is

the operator-norm distance from V to the set

of bounded operators on L2 having rank < n.



Compactness

Suppose T is a bounded operator on a sep-
arable Hilbert space H.

Defn. To say “T is compact” means:

T takes each bounded subset of H into a
relatively compact set.

i.e., if (fn) is a bounded sequence in H then

(Tfn) has a (norm-) convergent subsequence.

Prop. (From last time).

For f ∈ L2 and 0 ≤ x1 ≤ x2 ≤ 1:

|V f(x2)− V f(x1)| ≤
√
x2 − x1 f

Proof. |V f(x2)− V f(x1)| =

 x2

x1
f(t) dt



= |〈χ[x1,x2], f〉| ≤ χ[x1,x2] f

=
√
x2 − x1 f

Corollary. V is a compact operator on L2.

Proof. By above Prop. and Arzela-Ascoli,

V (B) is relatively compact in C([0, 1])
for each bounded B ⊂ H.

Now C([0, 1]) ⊂ L2 and  · ∞ ≥  · 2

Conclude. B ⊂ L2 bounded =⇒
V (B) relatively compact in L2.
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√
x2 − x1 f

Corollary. V is a compact operator on L2.

Prop. If T is compact and S bounded then
ST and TS are compact.

Defn. To say T is positive, means that

〈Tf, f〉 ≥ 0 ∀ f ∈ H.

Now recall the

Defn of Adjoint. 〈Tf, g〉 = 〈f, T ∗g〉

Prop. T ∗T is positive for any op. T on H.

Proof. 0 ≤ Tf2 = 〈Tf, Tf〉 = 〈T ∗Tf, f〉

Corollary. V ∗V is positive and compact.



Spectral Decomposition

A Spectral Theorem. Suppose the oper-
ator T is positive and compact. Then ∃:

(a) An orthonormal basis (en)
∞
1 for H, and

(b) A sequence λn ↘ 0, such that

(*) Tf =

∞

n=0

λn〈f, en〉en (f ∈ H),

the series converging in the norm of H.

Remark. The λn’s are the eigenvalues of T ;

the en’s are the corresponding eigenvectors.

Prop. Every positive compact operator has
a (positive) square root.

Proof. In the spectral rep’n (*) of T , replace

λn by
√
λn. Resulting series converges to a

bounded operator S on H with S2 = T .

Theorem. (Spectral decomp. of V ∗V .)

V ∗V f =

∞

n=1

λn〈f, en〉en,

where λn = ((2n− 1)π2 )
−2,

and en(x) =
√
2 cos


(2n− 1)π2x


.

Proof. Easy to check that V ∗V en = λnen.

Conversely, suppose λ ∈ C and f ∈ L2 with

(**) V ∗V f = λf

Then λ ∕= 0 (V & V ∗ are 1-1, hence also V ∗V ).

Recall: For f ∈ L2 and 0 ≤ x ≤ 1:

V f(x) =
 x

0
f and V ∗f =

 1

x
f .

Exercise: λ ∕= 0 & (**) =⇒ f ∈ C∞([0, 1])



Spectral Decomposition of V ∗V

Theorem. (Spectral decomp. of V ∗V .)

V ∗V f =
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where λn = ((2n− 1)π2 )
−2,

and en(x) =
√
2 cos


(2n− 1)π2x


.

Proof. Easy to check that V ∗V en = λnen.

Conversely, suppose λ ∈ C and f ∈ L2 with

(**) V ∗V f = λf

Then λ ∕= 0 (V & V ∗ are 1-1, hence also V ∗V ).

Recall: For f ∈ L2 and 0 ≤ x ≤ 1:

V f(x) =
 x

0
f and V ∗f =

 1

x
f .

Exercise: λ ∕= 0 & (**) =⇒ f ∈ C∞([0, 1])

∴ can diff. both sides of (**) twice to get

−f = λf ′′ , i.e., f ′′ + 1
λ
f = 0,

which has general solution

f(x) = a cos(x/
√
λ) + b sin(x/

√
λ)

subject to boundary conditions

λf(1) = V ∗V f(1) = 0, i.e., f(1) = 0

and

λf ′(0) = −V f(0) = 0, i.e., f ′(0) = 0,

which imply

f(x) = const. cos(x/
√
λ)

with

λ =

(2n− 1)π

2

−2

Next: The SVD of the Volterra Operator



The SVD of V

Theorem. (Spectral decomp. of V ∗V .)

V ∗V f =
∞

n=1

λn〈f, en〉en,

where λn = ((2n− 1)π
2
)−2,

and en(x) =
√
2 cos


(2n− 1)π

2
x

.

Defn. (“Abs. value” of V ). This is the “square
root“ of V ∗V , defined on L2 by:

|V |f :=

∞

n=1

√
λn〈f, en〉en

Theorem (The SVD of V ). ∀ f ∈ L2:

V f =

∞

n=1

√
λn〈f, en〉hn

where
hn(x) =

√
2 sin


(2n− 1)π

2
x


Proof. SVD in infinite dimensional Hilbert
space works for compact operators “just like”
it does for linear operators in finite dimensions.
In other words:

V f =
∞

n=1

√
λn 〈f, en〉hn

with (λn) and (en) as in Thm. at left, and

hn(x) = V en(x)/
√
λn

=
√
2 sin


(2n− 1)π

2
x


Theorem (Closed-form for |V |) For f ∈ L2:

|V |f(x) =
 1

t=0

K(x, t) f(t) dt (0 ≤ x ≤ 1)

where

K(x, t) =
1

π
log


cos πt

2
+ cos πx

2

cos πt
2
− cos πx

2

 .



Proof of “Closed Form for |V |”

|V |f(x) =
∞

n=1

√
λn〈f, en〉 en(x)

=
∞

n=1


λk

 1

0

f(t) en(t) dt

en(x)

=

 1

0

 ∞

n=1


λk en(t) en(x)

  
K(x,t)


f(t) dt

Now write en(t) =
√
2 cos θn(t), where

θn(t) = (2n− 1)π
2
t ,

so
en(t) en(x) = 2 cos θn(t) cos θn(x)

= cos θn(t+ x) + cos θn(t− x) .
whereupon

K(x, t) =
2

π

∞

n=1

cos θn(t+ x) + cos θn(t− x)

2n− 1

After some manipulation with complex-
exponential geometric series:

(∗)
∞

n=1

cos(2n− 1)θ

2n− 1
=

1

2
log

 cot
θ

2



from which we obtain

πK(x, t) = log
 cot

π(t+ x)

4

 + log

cot
π(t− x)

4



= log
 cot

π(t+ x)

4
cot

π(t− x)

4



= log

cos π(t+x)

4
cos π(t−x)

4

sin π(t+x)
4

sin π(t−x)
4



= log

cos πt

2
+ cos πx

2

cos πt
2
− cos πx

2

 .
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