SVD For the Volterra Operator

Joel H. Shapiro

Analysis Seminar
Portland State University
February 17, 2023

$$
(V f)(x)=\int_{0}^{x} f(t) d t
$$

LAST TIME: for $f \in L^{2}$ and $0 \leq x \leq 1$ we:

- Defined: $(V f)(x):=\int_{0}^{x} f(t) d t$

$$
V^{*} \text { on } L^{2} \text { by: }\left\langle f, V^{*} g\right\rangle:=\langle V f, g\rangle
$$

- Proved: $\left(V^{*} f\right)(x):=\int_{x}^{1} f(t) d t$
- Showed: V and V^{*} are bounded operators, one-to-one (not "onto"), have no eigenvalues.
- Observed: $\left(\frac{2}{\pi}\right)^{2}$ an eigenvalue of $V^{*} V$, with eigenvector $\cos \left(\frac{\pi}{2} x\right)$
- Proved: $\|V\|:=\sup _{\|f\| \leq 1}\|V f\|=\frac{2}{\pi}$.

ToDAY: we'll derive:

The Volterra SVD. There exist:
(a) o.n. bases $\left(e_{n}\right)_{1}^{\infty}$ and $\left(h_{n}\right)_{1}^{\infty}$ for $L^{2}, \&$
(b) a positive sequence $s_{n} \searrow 0$, such that

$$
V f=\sum_{n=1}^{\infty} s_{n}\left\langle f, e_{n}\right\rangle h_{n} \quad\left(f \in L^{2}\right)
$$

the series converging in the norm of L^{2}.

In talks on SVD by Jim [4] and Sheldon [2], we saw that: $s_{1}=\|V\|$, and more generally, s_{n} is the operator-norm distance from V to the set of bounded operators on L^{2} having rank $<n$.

Suppose T is a bounded operator on a separable Hilbert space H.

Defn. To say " T is compact" means:
T takes each bounded subset of H into a relatively compact set.
i.e., if $\left(f_{n}\right)$ is a bounded sequence in H then ($T f_{n}$) has a (norm-) convergent subsequence.

Prop. (From last time).
For $f \in L^{2}$ and $0 \leq x_{1} \leq x_{2} \leq 1$:

$$
\left|V f\left(x_{2}\right)-V f\left(x_{1}\right)\right| \leq \sqrt{x_{2}-x_{1}}\|f\|
$$

Proof. $\left|V f\left(x_{2}\right)-V f\left(x_{1}\right)\right|=\left|\int_{x_{1}}^{x_{2}} f(t) d t\right|$
$=\left|\left\langle\chi_{\left[x_{1}, x_{2}\right]}, f\right\rangle\right| \leq\left\|\chi_{\left[x_{1}, x_{2}\right]}\right\|\|f\|$
$=\sqrt{x_{2}-x_{1}}\|f\|$

Corollary. V is a compact operator on L^{2}.
Proof. By above Prop. and Arzela-Ascoli, $V(B)$ is relatively compact in $C([0,1])$ for each bounded $B \subset H$.

Now $C([0,1]) \subset L^{2}$ and $\|\cdot\|_{\infty} \geq\|\cdot\|_{2}$
Conclude. $B \subset L^{2}$ bounded \Longrightarrow $V(B)$ relatively compact in L^{2}.

Suppose T is a bounded operator on a separable Hilbert space H.

Defn. To say " T is compact" means:
T takes each bounded subset of H into a relatively compact set.
i.e., if $\left(f_{n}\right)$ is a bounded sequence in H then ($T f_{n}$) has a (norm-) convergent subsequence.

Prop. (From last time).
For $f \in L^{2}$ and $0 \leq x_{1} \leq x_{2} \leq 1$:

$$
\left|V f\left(x_{2}\right)-V f\left(x_{1}\right)\right| \leq \sqrt{x_{2}-x_{1}}\|f\|
$$

Proof. $\left|V f\left(x_{2}\right)-V f\left(x_{1}\right)\right|=\left|\int_{x_{1}}^{x_{2}} f(t) d t\right|$
$=\left|\left\langle\chi_{\left[x_{1}, x_{2}\right]}, f\right\rangle\right| \leq\left\|\chi_{\left[x_{1}, x_{2}\right]}\right\|\|f\|$
$=\sqrt{x_{2}-x_{1}}\|f\|$

Corollary. V is a compact operator on L^{2}.

Prop. If T is compact and S bounded then ST and TS are compact.

Defn. To say T is positive, means that

$$
\langle T f, f\rangle \geq 0 \quad \forall f \in H .
$$

Now recall the
Defn of Adjoint. $\langle T f, g\rangle=\left\langle f, T^{*} g\right\rangle$
Prop. $T^{*} T$ is positive for any op. T on H.
Proof. $0 \leq\|T f\|^{2}=\langle T f, T f\rangle=\left\langle T^{*} T f, f\right\rangle$

Corollary. $V^{*} V$ is positive and compact.

Spectral Decomposition

A Spectral Theorem. Suppose the operator T is positive and compact. Then \exists :
(a) An orthonormal basis $\left(e_{n}\right)_{1}^{\infty}$ for H, and
(b) A sequence $\lambda_{n} \searrow 0$, such that
(*) $T f=\sum_{n=0}^{\infty} \lambda_{n}\left\langle f, e_{n}\right\rangle e_{n} \quad(f \in H)$,
the series converging in the norm of H.
Remark. The λ_{n} 's are the eigenvalues of T; the e_{n} 's are the corresponding eigenvectors.

Prop. Every positive compact operator has a (positive) square root.

Proof. In the spectral rep'n (*) of T, replace λ_{n} by $\sqrt{\lambda_{n}}$. Resulting series converges to a bounded operator S on H with $S^{2}=T$.

Theorem. (Spectral decomp. of $V^{*} V$.)

$$
V^{*} V f=\sum_{n=1}^{\infty} \lambda_{n}\left\langle f, e_{n}\right\rangle e_{n}
$$

where $\lambda_{n}=\left((2 n-1) \frac{\pi}{2}\right)^{-2}$, and $e_{n}(x)=\sqrt{2} \cos \left((2 n-1) \frac{\pi}{2} x\right)$.

Proof. Easy to check that $V^{*} V e_{n}=\lambda_{n} e_{n}$.
Conversely, suppose $\lambda \in \mathbb{C}$ and $f \in L^{2}$ with
(**) $\quad V^{*} V f=\lambda f$
Then $\lambda \neq 0\left(V \& V^{*}\right.$ are 1-1, hence also $\left.V^{*} V\right)$.
Recall: For $f \in L^{2}$ and $0 \leq x \leq 1$:

$$
V f(x)=\int_{0}^{x} f \text { and } V^{*} f=\int_{x}^{1} f .
$$

Exercise: $\lambda \neq 0 \&(* *) \Longrightarrow f \in C^{\infty}([0,1])$

Theorem. (Spectral decomp. of $V^{*} V$.)

$$
V^{*} V f=\sum_{n=1}^{\infty} \lambda_{n}\left\langle f, e_{n}\right\rangle e_{n}
$$

where $\lambda_{n}=\left((2 n-1) \frac{\pi}{2}\right)^{-2}$, and $e_{n}(x)=\sqrt{2} \cos \left((2 n-1) \frac{\pi}{2} x\right)$.

Proof. Easy to check that $V^{*} V e_{n}=\lambda_{n} e_{n}$.
Conversely, suppose $\lambda \in \mathbb{C}$ and $f \in L^{2}$ with
(**) $\quad V^{*} V f=\lambda f$
Then $\lambda \neq 0\left(V \& V^{*}\right.$ are 1-1, hence also $\left.V^{*} V\right)$.
Recall: For $f \in L^{2}$ and $0 \leq x \leq 1$:

$$
V f(x)=\int_{0}^{x} f \text { and } V^{*} f=\int_{x}^{1} f
$$

Exercise: $\lambda \neq 0 \&(* *) \Longrightarrow f \in C^{\infty}([0,1])$
\therefore can diff. both sides of $\left({ }^{* *}\right)$ twice to get

$$
-f=\lambda f^{\prime \prime}, \text { i.e., } f^{\prime \prime}+\frac{1}{\lambda} f=0
$$

which has general solution

$$
f(x)=a \cos (x / \sqrt{\lambda})+b \sin (x / \sqrt{\lambda})
$$

subject to boundary conditions

$$
\lambda f(1)=V^{*} V f(1)=0 \text {, i.e., } f(1)=0
$$

and

$$
\lambda f^{\prime}(0)=-V f(0)=0, \text { i.e., } f^{\prime}(0)=0
$$

which imply

$$
f(x)=\text { const. } \cos (x / \sqrt{\lambda})
$$

with

$$
\lambda=\left((2 n-1) \frac{\pi}{2}\right)^{-2}
$$

Next: The SVD of the Volterra Operator

Theorem. (Spectral decomp. of $V^{*} V$.)

$$
V^{*} V f=\sum_{n=1}^{\infty} \lambda_{n}\left\langle f, e_{n}\right\rangle e_{n},
$$

where $\quad \lambda_{n}=\left((2 n-1) \frac{\pi}{2}\right)^{-2}$, and $\quad e_{n}(x)=\sqrt{2} \cos \left((2 n-1) \frac{\pi}{2} x\right)$.

Defn. ("Abs. value" of V). This is the "square root " of $V^{*} V$, defined on L^{2} by:

$$
|V| f:=\sum_{n=1}^{\infty} \sqrt{\lambda_{n}}\left\langle f, e_{n}\right\rangle e_{n}
$$

Theorem (The SVD of V). $\forall f \in L^{2}$:

$$
V f=\sum_{n=1}^{\infty} \sqrt{\lambda_{n}}\left\langle f, e_{n}\right\rangle h_{n}
$$

where

$$
h_{n}(x)=\sqrt{2} \sin \left((2 n-1) \frac{\pi}{2} x\right)
$$

Proof. SVD in infinite dimensional Hilbert space works for compact operators "just like" it does for linear operators in finite dimensions. In other words:

$$
V f=\sum_{n=1}^{\infty} \sqrt{\lambda_{n}}\left\langle f, e_{n}\right\rangle h_{n}
$$

with $\left(\lambda_{n}\right)$ and $\left(e_{n}\right)$ as in Thm. at left, and

$$
\begin{aligned}
h_{n}(x) & =V e_{n}(x) / \sqrt{\lambda_{n}} \\
& =\sqrt{2} \sin \left((2 n-1) \frac{\pi}{2} x\right)
\end{aligned}
$$

Theorem (Closed-form for $|V|$) For $f \in L^{2}$:

$$
|V| f(x)=\int_{t=0}^{1} K(x, t) f(t) d t \quad(0 \leq x \leq 1)
$$

where

$$
K(x, t)=\frac{1}{\pi} \log \left|\frac{\cos \frac{\pi t}{2}+\cos \frac{\pi x}{2}}{\cos \frac{\pi t}{2}-\cos \frac{\pi x}{2}}\right| .
$$

$$
\begin{aligned}
& |V| f(x)=\sum_{n=1}^{\infty} \sqrt{\lambda_{n}}\left\langle f, e_{n}\right\rangle e_{n}(x) \\
& =\sum_{n=1}^{\infty} \sqrt{\lambda_{k}}\left(\int_{0}^{1} f(t) e_{n}(t) d t\right) e_{n}(x) \\
& =\int_{0}^{1}(\underbrace{\sum_{n=1}^{\infty} \sqrt{\lambda_{k}} e_{n}(t) e_{n}(x)}_{K(x, t)}) f(t) d t
\end{aligned}
$$

Now write $e_{n}(t)=\sqrt{2} \cos \theta_{n}(t)$, where

$$
\theta_{n}(t)=(2 n-1) \frac{\pi}{2} t
$$

so

$$
\begin{aligned}
& e_{n}(t) e_{n}(x)=2 \cos \theta_{n}(t) \cos \theta_{n}(x) \\
& \quad=\cos \theta_{n}(t+x)+\cos \theta_{n}(t-x)
\end{aligned}
$$

whereupon

$$
K(x, t)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos \theta_{n}(t+x)+\cos \theta_{n}(t-x)}{2 n-1}
$$

After some manipulation with complexexponential geometric series:
(*) $\quad \sum_{n=1}^{\infty} \frac{\cos (2 n-1) \theta}{2 n-1}=\frac{1}{2} \log \left|\cot \frac{\theta}{2}\right|$
from which we obtain

$$
\pi K(x, t)=\log \left|\cot \frac{\pi(t+x)}{4}\right|+\log \left|\cot \frac{\pi(t-x)}{4}\right|
$$

$$
=\log \left|\cot \frac{\pi(t+x)}{4} \cot \frac{\pi(t-x)}{4}\right|
$$

$$
=\log \left|\frac{\cos \frac{\pi(t+x)}{4} \cos \frac{\pi(t-x)}{4}}{\sin \frac{\pi(t+x)}{4} \sin \frac{\pi(t-x)}{4}}\right|
$$

$$
=\log \left|\frac{\cos \frac{\pi t}{2}+\cos \frac{\pi x}{2}}{\cos \frac{\pi t}{2}-\cos \frac{\pi x}{2}}\right|
$$

References

1. Sheldon Axler, Linear Algebra Done Right, 4th ed. SVD in Chapter 7.
2. State Univ. Analysis Seminar.
3. William Ross, Mini-course on Operators on Function Spaces. In: the Fields Institute's online: Focus Program on Analytic Function Spaces and their Applications, July-December, 2021.
4. James Rulla, The Singular Value Decomposition for Analysts, Slides for two talks in the 2022-23 Portland State Univ. Analysis Seminar.
5. Robert Schatten, Norm Ideals of Completely Continuous Operators, Springer 1960.
6. Joel H. Shapiro, The Volterra Operator. Slides for a talk at the 2022-23 Portland State Univ. Analysis Seminar.
7. \qquad Volterra Variations. Rough draft of some notes on the Volterra operator.
