
University of Toronto, Canada, Apr 2024
Phi2n−1

qq q q2n−1 2n 2n+1qq 2n−3 2n−2

2nPhi

2n−4

S(q      )2n−1

S(q   )2n

0 50 100 150 200
-2

-1

0

1

2

Birkho↵ Sums
A Survey of Some Recent Research

J. J. P. Veerman,
Math/Stat, Portland State Univ.,

Portland, OR 97201, USA.
email: veerman@pdx.edu

Based on informal Portland State Notes:
Co-authored with L. Fox, F. M. Tangerman, H.
Kravitz, C. Aagaard, P. Miracle, I. Shankar, D.

Ralston, H. Moore, and others.

Presenting Numbers from All Angles .
Graduate number theory text (under review)

Send inquiries to above email.

1



SUMMARY:

* We explain the connection between Birkho↵ Sums and vari-
ous subbranches of mathematics: numerical analysis, number
theory, ergodic theory, and dynamical systems.

* We prove that one can use Birkho↵ sums to measure exactly
the discrepancy of irrational rotations. Discrepancy was de-
fined by Pisot and Van Der Corput in the 1930s, which is used
to study the well-distributedness of infnite sequences in [0, 1).

* We exhibit the surprising variety of measures associated with
Birkho↵ sums and show that they tile R.

* We conjecture exact growth rates of certain Birkho↵ sums
for rotations by ‘metallic means’ (or ⇢ = [a, a, · · · ]). We prove
these results for a = 1 and a = 2.

* We will suppress technical details to keep the exposition
accessible for graduate students.

NOTATION:

{x} means fractional part of x

bxc means integer part of x
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The Set Up

Measuring the Sums

Birkho↵ Measures

Discrepancy

Computing Birkho↵ Measures

Examples of Exact Birkho↵ Sums

Partial Proof

Appendix: More Pictures
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I N T R O D U C I N G T H E

B I R K H O F F S U M S

Overisel (Michigan) was named after the Dutch province of
Overijssel and is the birthplace of George David Birkho↵.
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Definitions
Definition Birkho↵ sum. Let f : R/Z ! R/Z a contin-
uous map and � : R/Z ! R a map with average zero. Then
S(f, n, x) :=

Pn
i=1 �(f

i(x)) .

In practice: rotation and “identity” minus 1/2:

f⇢(x) := x + ⇢ mod 1 and �(x) = x� 1/2 .

f

0=1

0 1−1

phi

So �(f ) looks like this:

In this case, Birkho↵ sum becomes

S(⇢, n, x) :=
nX

i=1

(fi
⇢(x) � 1/2) .

We are interested in the properties of this sum for irrational ⇢.
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Connections

Birkho↵ sums are studied for their own sake, and for their
connections with other areas of mathematics.

Connection I: Ergodic Theory is concerned with show-
ing that the average of S converges. There is a large liter-
ature on how good that convergence is. (Ulcigrai, Bromberg,
Dolgopyat, Beck, Sarig, Ralston, Knill, ....).

Connection II: Discrepancy Theory started by Van Der
Corput and Pisot in the 1930’s. Given an infinite sequence
x := {xi}1i=1 in [0, 1), how evenly distributed are the first n
points distributed (for any n)? This is important inNumeri-
cal Analysis to interpolate or estimate a quantity on a set of
points generated by a “low-discrepancy” or “quasiran-
dom” sequence. This minimizes numerical uncertainties.
(wikipedia “Low-discrepancy sequence”).

Connection III: Rotations are an important topic inDy-
namical Systems.
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S(⇢, n, 0)

The study of S(⇢, n, x0) where only n varies. Often we take
x0 = 0. Below we plot S(⇢, n, 0) where ⇢ is the golden mean.
We often ‘connect the dots’ in order to guide the eye.

The “self-similar” structure is evident. Also: wild fluctuations,
but envelope grows slowly. In Fact: as lnn.
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As a Density
Fix n, study of the measure ⌫(⇢, n, y) obtained by taking an
infinitesimal interval I = [y, y + dy) in R and determining its
pre-images under S(⇢, n, x). Below, ⇢ is the golden mean.

0 0.2 0.4 0.6 0.8 1
-1

0

1

-1 -0.5 0 0.5 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1

-1

0

1

-1 -0.5 0 0.5 1
0

0.5

9



The Support of the Density

The support of ⌫(⇢, n, y) is an interval [�M,M ] and M de-
pends on ⇢ and n.

Below, ⇢ is the golden mean. we sketch M (red), �M (blue),
and S(⇢, n, 0) (yellow), and S(⇢, n, 1� 5�1/2) (purple).
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Clearly �M  S(⇢, n, x0)  M . But remarkably, the purple
signal appears to be always negative. This is indeed the
the case for an uncountable set of initial conditions x0 [9]
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George David Birkho↵
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The Densities Tile

These densities are very interesting.

Theorem, symmetries. The densities ⌫(⇢, n, y) satisfy:
(i) They are invariant under y $ �y.
(ii) They are invariant under ⇢ $ �⇢.

Theorem, tiling. The densities ⌫(⇢, n, y) satisfy:
(i) Their support is a connected interval.
(ii) The density is positive in the interior of the interval.
(iii) The sum of ⌫(⇢, n, y� i) for i 2 Z equals the Lebesgue
measure on R.
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⇢ = e� 2 and n = 213 and 2024, respectively.
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Further Properties of the Density

Theorem. If n is a continued fraction denominator of ⇢, then
⌫ is an isoceles trapezoid (see page 9).

Theorem [5]. If we average ⌫(⇢, n, z) over ⇢ (with respect
the Lebesgue) on ⇢ 2 [0, 1), then the resulting distribution
converges to a Cauchy distribution.

However, for fixed ⇢ there is NO convergence as n ! 1.
We know that the trapezoid occurs infinitely often. On the
next page, we give some idea of the stunning variety of these
measures just for ⇢ = e� 2.

For comparison:
e � 2 = [1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, · · · ]

And the approximants are:
1, 2

3
, 3
4
, 5
7
, 23
32
, 28
39
, 51
71
, 334
465

, 385
536

, 719
1001

, 6137
8544

, ...

Considering this, we’ll consider a simpler (?) derived quantity
in the next section. The support of the densities is a symmetric
closed interval. We’ll study the length of that interval.
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Illustration of Non-Convergence
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Discrepancy

Studied by Pisot and Van Der Corput [4] and later in [7].

Definition. Let x := {xi}1i=1, I an interval in [0, 1). Then

A(I, n) := {# first n points of x in I} .
The discrepancy Dn(x) of x is

Dn(x) := sup
I✓[0,1)

����
A(I,N)

N
� `(I)

���� .

Here I ✓ [0, 1) ranges over the half open intervals.
Note: we will use nDn and call it clumpiness Cn(x).

Example 1. (x1, · · · , xn) = (x1, x1, · · · , x1): Cn(x) = n.
Example 2. (x1, · · · , xn) = (1

n
,
2
n
, · · · , n

n
): Cn(x) = 1.

Intuition: Clumpiness is big if there are underpopulated OR
overpopulated intervals. Note that Cn(x) and Cn+1(x) cannot
both be perfectly evenly distributed.

Purpose: Study how evenly distributed an infinite sequence
x is. Weyl (1916) proved that x is uniformly distributed1 is
equivalent to limn!1Dn(x) = 0. Used to generate ’quasi-
random’ sequences important in numerical analysis.

Theorem. [8] (pg 24) For any infinite sequence x, the fol-
lowing holds for infinitely many n: Cn(x) > c lnn, where2

c = .120 · · · .
1Means that every interval has the right amount of points ‘in the limit’.
2To be precise, c = maxx>3

x�2
4(x�1) ln x .
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A Surprising Result

Theorem. [13] The clumpiness of {i⇢}n
i=1 equals the length

of the support of ⌫(⇢, n, x).
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The Proof is elementary and consists of three steps.
1: The symmetries on page 12 imply that

⌫(⇢, n, x) = ⌫(1� ⇢, n, x) = ⌫(⇢, n,�x)

2: This discontinuities of S(⇢, n, x) are at {�i⇢}. Re-label
these as yi in ascending order in [0, 1). Then express supS �
minS in terms of the yi.
3: Show that expression obtained equals the clumpiness. QED
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⌫(⇢, qn, z)
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Sums of Fractional Parts of i⇢

Proposition. [13] Let gcd(p, q) = 1 and set d := q⇢� p. If
|d| < 1/(q � 1), then

qX

i=1

{i⇢} =
(q + 1)d + q � 1

2
� bdc

qX

i=1

bi⇢c =
(q + 1)p� q + 1

2
+ bdc

Idea of Proof. S(⇢, q, 0) can be given in two ways:

(1) S(p
q
, q, 0) =

P
q

i=1

n
i
p

q

o
=
P

q

i=1

n
i

q

o
� 1� q

2 .

(2) S(p
q
, q, 0) = q · 0 + q(q+1)

2 ⇢� q

2 �
P

q

i=1

j
i
p

q

k
.

(1) can be computed exactly.

Equate to (2) to get expression for
P

q

i=1

j
i
p

q

k
.

But this is equal to
P

q

i=1 bi⇢c for ⇢ close to p/q.
Compute

P
q

i=1 i⇢.
The di↵erence yields the proposition. QED

This result can now be leveraged to write the q branches of

S(⇢, q, x) = qx +
q(q + 1)⇢� q

2
�

qX

i=1

bx + i⇢c

explicitly.
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Movement of the Branches

Let p/q a continued fraction denominator of ⇢ and d := q⇢�p.
Compute S((p + td)/q, q, x) when d small:

qx +
(q + 1)(p + td)� q

2
�

qX

i=1

�
x + i

p + td

q

⌫

where t is going from 0 to 1. See Figure. A, B, and C, are,

respectively,
(q + 1)d

2
,
i+d

q
, and

(q + 1� 2i+)d

2
.

j

1/2

−1/2

A

B

C

S

As long as the jth branch satisfies: Sj(xleft) < 0 and Sj(xright) >
0, the number of inverse images of 0 equals q, ie: ⌫(0) = 1.
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The Trapezoid Theorem

In analyzing this one sees that the reasoning is completely
independent of p as long as it is a reduced residue modulo
q. So set ⇢0 = ⇢� p�1

q
⇡ 1/q:

⌫(⇢, q, z) = ⌫(⇢0, q, z)

0 0.5 1
-1

0

1

-1 -0.5 0 0.5 1
0

0.5

1

0.5(1−(q−1)|d|)−0.5(1−(q−1)|d|)−0.5(1+(q−1)|d|) 0.5(1+(q−1)|d|)

So, Theorem: 1
For p, q, rho 
such |d|<1/(q−1)
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Example of Trapezoid Theorem I
23
32 and

28
39 are successive approximants of e� 2.

e � 2 � 22/32 = [32, 2, 18, · · · ].
The “2 interval thm” applies [12]: 31 short ones and 1 long.
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Example of Trapezoid Theorem II

23
32 and

28
39 are successive approximants of e� 2.

e � 2 � 27/39 = [38, 2, 1532, · · · ].
The “3 interval thm” applies [12]: 37 medium, 1 short, 1 long.
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Bonus Theorem about Discrepancy

Bonus Theorem. For ⇢, p, and q such that

|d| = |q⇢� p| < 1/(q � 1)

the clumpiness (or q times the discrepancy) of {i⇢}q
i=1 equals

1 + (q � 1)|d| (exactly).

Proof. Because the clumpiness equals the length of the sup-
port of ⌫ (Theorem, page 17). QED

Idea. Let qn be the continued fraction denominators of ⇢.
Figure out how the clumpiness of {i⇢}qn+qk

i=1 with k < n a↵ects
the length of the support of ⌫.

Then you may be able to derive precise upper bounds for the
clumpiness (ie discrepancy) of {i⇢}qn+qk

i=1 as n ! 1. Generaliz-
ing that, and writing arbitrary n as sums of qn, we may get the
running max of the clumpiness of {i⇢}j

i=1, for j 2 {1, · · · , qn}.

Note. Similar to what we do later with S(i).

24



.

B I R K H O F F S U M S O F

T H E M E T A L L I C A

25



Key Result I

Definition. Fix a rot. number ⇢, set x = 0, and abbreviate

S(n) := S(⇢, n, 0) =
nX

i=1

✓
{i⇢} �

1

2

◆

⇧ pn/qn are the cont’d fr. approximants of ⇢.
⇧ dn := qn⇢� pn.

Theorem. S(qn) = (�1)n
(qn + 1)|dn| � 1

2

Proof. Subtract qn/2 from Prop. page 19, rework. QED

Note. We know qn|dn| < ⇢ [12] (exerc. 6.12). So
S(qn) > 0 if n odd, and S(qn) < 0 if n even.

See Figure below.
Black: {i⇢} with i 2 {1, · · · , qn}.
Then in red: {i⇢} with i 2 {qn + 1, · · · , qn + i}.

[ )0 1

Red position = black position + dn.
Sometimes various times over (if an+1 > 1).
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Key Result II

Reasoning like that gives the next key result.

Theorem. For all i with 0  i < (an+1 � 1)qn + qn�1:

S(qn + i) = S(qn) + S(i) + idn .

The series S(i) is “self-similar” by a�ne maps.
Below we sketch the situation for the golden mean.

Phi2n−1

qq q q2n−1 2n 2n+1qq 2n−3 2n−2

2nPhi

2n−4

S(q      )2n−1

S(q   )2n
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The Metallic Means

Definition. The metallic means are (for a 2 N)

⇢a := [a, a, a, · · · ] =
r

a2

4
+ 1� a

2
For a equal to 1, 2, and 3: ‘golden’, ‘silver’, and ‘bronze’.

Lemma. For the metallic mean ⇢a := [a, a, a, · · · ], we have

dn = (�1)n⇢n+1
a

and qn =
⇢
�n�1
a

� (�⇢a)n+1

p
a2 + 4

The plan: find Mn: the max of S on {0, 1 · · · , q2n+1}.
Then find mn: the min of S on {0, 1 · · · , q2n+2}.

This appears to determine constants Ka > 0 so that
S(Mn)�Kan and S(mn) +Kan are bounded.
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A Conjecture and Numerical Evidence

Recall: Mn is the max of S on {0, 1 · · · , q2n+1},
while mn is the min of S on {0, 1 · · · , q2n+2}.

Conjecture. |S(Mn)�Kan| and |S(mn)+Kan| are bounded

where Ka =

8
>><

>>:

a

8
a even

a(a2 + 3)

8(a2 + 4)
a odd

Numerical Evidence. ComputeKa for a 2 {1, 2, · · · , 16}.
Check accuracy of computation: know S(qn) exactly.

Plot Ka �
a(a2 + 3)

8(a2 + 4)
. See below.
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Remarks

Observation: Since lnMn = ca+2n ln ⇢where ca is bounded,
we can compute the following.

Corollary to Conjecture: lim supi
S(i)

ln i
= ⇣(a) and ⇣(a)

is plotted for even a is red, and odd a in green.

More specifically, for a 2 {1, · · · , 8}, ⇣(a) equals:
0.1039043458
0.1418240820
0.1448629492
0.1731739099
0.1831704913
0.2062199841
0.2183653720
0.2386962361
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Data for the Silver Mean

We have proof of the conjecture for the golden and silver means
and partial results for some other metallica. We outline the
proof for the silver mean.

The silver mean ⇢2 equals
p
2� 1. Some convergents, starting

with p0
q0

0,
1

2
,
2

5
,

5

12
,
12

29
,
29

70
,

70

169
,
169

408
,
408

985
,

985

2378
,
2378

5741

Define Mn and mn as

(
Mn =

P
n�1
i=0 q2i+1

mn =
P

n

i=0 q2i

. We list the first

few, starting with M0, and m0:

Mn = 0, 2, 14, 84, 492, 2870

mn = 1, 6, 35, 204, 1189, 6930

Recall that

dn = (�1)n⇢n+1
2 and qn =

⇢
�n�1
2 � (�⇢2)n+1

p
22 + 4
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S(i) for the Silver Mean

pn

qn
= 0,

1

2
,
2

5
,

5

12
,
12

29
,
29

70
,

70

169
,
169

408
,
408

985
, · · ·

Mn = 0, 2, 14, 84, 492, 2870, · · ·
mn = 1, 6, 35, 204, 1189, 6930, · · ·
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First Part of the Proof

Proposition I. For Mn as defined, we have

S(Mn+1)� S(Mn) =
1

4
(1� ⇢

4n+4)

Idea of Proof. Since Mn+1 = q2n+1 +Mn, use Key Result
II (pg 27) to see

S(Mn+1) = S(q2n+1) + S(Mn) +Mnd2n+1

So S(Mn+1)� S(q2n+1) = S(Mn) +Mnd2n+1

Now use Lemma pg 29 to compute S(qn) andMnd2n+1 in terms
of ⇢. QED

Warning. This sounds obvious, but remember you do not a
priori know what the values Mn are.

Note. For the minima similar estimates work, because their
definition is essentially the same.

Corollary. In fact,

S(Mn)�
n

4
=

�⇢
4

4(1� ⇢4)
+O(⇢4n)
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Second Part of the Proof

Proposition II. S(Mn) > S(i) for all i in {0, 1, 2, · · · , q2n+1�
1} (except when i = Mn).

Main Steps of Proof. Step 1. Define Mi as in part I.
Use Key Result II to show by induction that

S(⇢,Mn, 0) > S(⇢, i, 0) for all 0  i < q2n�1 .

Step 2. Connect the points (Mi�1, S(Mi�1)) and (Mi, S(Mi))
by a segment `i (see figure). Show that the image under �2n�1

of `n�1 is increasing for all n. QED

M M M
n−2 n−1 n0

2n−1
Phi

q
2n−1

ell
ell

n−1

n

2n−1
Phi elln−1( )

Note. Again, the computation is the same for the minima.
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The Golden Mean

First i 2 {1, · · · 100}, then i 2 {1, · · · 105}.
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The Metallic-5 Mean

First i 2 {1, · · · 100}, then i 2 {1, · · · 105}.
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