University of Toronto, Canada, Apr 2024

Birkhoff Sums

A Survey of Some Recent Research
J. J. P. Veerman,

Math/Stat, Portland State Univ., Portland, OR 97201, USA. email: veerman@pdx.edu

Based on informal Portland State Notes: Co-authored with L. Fox, F. M. Tangerman, H. Kravitz, C. Aagaard, P. Miracle, I. Shankar, D. Ralston, H. Moore, and others.

Presenting Numbers from All Angles. Graduate number theory text (under review)

Send inquiries to above email.

SUMMARY:

* We explain the connection between Birkhoff Sums and various subbranches of mathematics: numerical analysis, number theory, ergodic theory, and dynamical systems.
* We prove that one can use Birkhoff sums to measure exactly the discrepancy of irrational rotations. Discrepancy was defined by Pisot and Van Der Corput in the 1930s, which is used to study the well-distributedness of infnite sequences in $[0,1)$.
* We exhibit the surprising variety of measures associated with Birkhoff sums and show that they tile \mathbb{R}.
* We conjecture exact growth rates of certain Birkhoff sums for rotations by 'metallic means' (or $\rho=[a, a, \cdots]$). We prove these results for $a=1$ and $a=2$.
* We will suppress technical details to keep the exposition accessible for graduate students.
$\{x\}$ means fractional part of x
$\lfloor x\rfloor$ means integer part of x

The Set Up

Measuring the Sums Birkhoff Measures

Discrepancy
Computing Birkhoff Measures
Examples of Exact Birkhoff Sums
Partial Proof

Appendix: More Pictures

INTRODUCING THE BIRKHOFF S U M S

Overisel (Michigan) was named after the Dutch province of Overijssel and is the birthplace of George David Birkhoff.

Definitions

Definition Birkhoff sum. Let $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ a continuous map and $\phi: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$ a map with average zero. Then $S(f, n, x):=\sum_{i=1}^{n} \phi\left(f^{i}(x)\right)$.

In practice: rotation and "identity" minus $1 / 2$:

$$
f_{\rho}(x):=x+\rho \quad \bmod 1 \quad \text { and } \quad \phi(x)=x-1 / 2 .
$$

So $\phi(f)$ looks like this:

In this case, Birkhoff sum becomes

$$
S(\rho, n, x):=\sum_{i=1}^{n}\left(f_{\rho}^{i}(x)-1 / 2\right)
$$

We are interested in the properties of this sum for irrational ρ.

Connections

Birkhoff sums are studied for their own sake, and for their connections with other areas of mathematics.

Connection I: Ergodic Theory is concerned with showing that the average of S converges. There is a large literature on how good that convergence is. (Ulcigrai, Bromberg, Dolgopyat, Beck, Sarig, Ralston, Knill,).

Connection II: Discrepancy Theory started by Van Der Corput and Pisot in the 1930's. Given an infinite sequence $x:=\left\{x_{i}\right\}_{i=1}^{\infty}$ in $[0,1)$, how evenly distributed are the first n points distributed (for any n)? This is important in Numerical Analysis to interpolate or estimate a quantity on a set of points generated by a "low-discrepancy" or "quasirandom" sequence. This minimizes numerical uncertainties. (wikipedia "Low-discrepancy sequence").

Connection III: Rotations are an important topic in $\mathbf{D y}$ namical Systems.

DIFFERENT W AYS TO MEASURE S

$S(\rho, n, 0)$

The study of $S\left(\rho, n, x_{0}\right)$ where only n varies. Often we take $x_{0}=0$. Below we plot $S(\rho, n, 0)$ where ρ is the golden mean. We often 'connect the dots' in order to guide the eye.

The "self-similar" structure is evident. Also: wild fluctuations, but envelope grows slowly. In Fact: as $\ln n$.

As a Density

Fix n, study of the measure $\nu(\rho, n, y)$ obtained by taking an infinitesimal interval $I=[y, y+d y)$ in \mathbb{R} and determining its pre-images under $S(\rho, n, x)$. Below, ρ is the golden mean.

The Support of the Density

The support of $\nu(\rho, n, y)$ is an interval $[-M, M]$ and M depends on ρ and n.

Below, ρ is the golden mean. we sketch M (red), $-M$ (blue), and $S(\rho, n, 0)$ (yellow), and $S\left(\rho, n, 1-5^{-1 / 2}\right)$ (purple).

Clearly $-M \leq S\left(\rho, n, x_{0}\right) \leq M$. But remarkably, the purple signal appears to be always negative. This is indeed the the case for an uncountable set of initial conditions $x_{0}[9]$

A CLOSER LOOK
 \square
 BIRKHOFFMEASURES

George David Birkhoff

These densities are very interesting.
Theorem, symmetries. The densities $\nu(\rho, n, y)$ satisfy:
(i) They are invariant under $y \leftrightarrow-y$.
(ii) They are invariant under $\rho \leftrightarrow-\rho$.

Theorem, tiling. The densities $\nu(\rho, n, y)$ satisfy:
(i) Their support is a connected interval.
(ii) The density is positive in the interior of the interval.
(iii) The sum of $\nu(\rho, n, y-i)$ for $i \in \mathbb{Z}$ equals the Lebesgue measure on \mathbb{R}.

$\rho=e-2$ and $n=213$ and 2024, respectively.

Theorem. If n is a continued fraction denominator of ρ, then ν is an isoceles trapezoid (see page 9).

Theorem [5]. If we average $\nu(\rho, n, z)$ over ρ (with respect the Lebesgue) on $\rho \in[0,1)$, then the resulting distribution converges to a Cauchy distribution.

However, for fixed ρ there is NO convergence as $n \rightarrow \infty$. We know that the trapezoid occurs infinitely often. On the next page, we give some idea of the stunning variety of these measures just for $\rho=e-2$.

For comparison:

$$
e-2=[1,2,1,1,4,1,1,6,1,1,8, \cdots]
$$

And the approximants are:

$$
1, \frac{2}{3}, \frac{3}{4}, \frac{5}{7}, \frac{23}{32}, \frac{28}{39}, \frac{51}{71}, \frac{334}{465}, \frac{385}{536}, \frac{719}{1001}, \frac{6137}{8544}, \ldots
$$

Considering this, we'll consider a simpler (?) derived quantity in the next section. The support of the densities is a symmetric closed interval. We'll study the length of that interval.

DISCREPANCY AND THE SUPPORT

Discrepancy

Studied by Pisot and Van Der Corput [4] and later in [7].
Definition. Let $\bar{x}:=\left\{x_{i}\right\}_{i=1}^{\infty}, I$ an interval in $[0,1)$. Then

$$
A(I, n):=\{\# \text { first } n \text { points of } \bar{x} \text { in } I\} .
$$

The discrepancy $D_{n}(\bar{x})$ of \bar{x} is

$$
D_{n}(\bar{x}):=\sup _{I \subseteq[0,1)}\left|\frac{A(I, N)}{N}-\ell(I)\right|
$$

Here $I \subseteq[0,1)$ ranges over the half open intervals. Note: we will use $n D_{n}$ and call it clumpiness $C_{n}(\bar{x})$.

Example 1. $\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}, x_{1}, \cdots, x_{1}\right): C_{n}(\bar{x})=n$. Example 2. $\left(x_{1}, \cdots, x_{n}\right)=\left(\frac{1}{n}, \frac{2}{n}, \cdots, \frac{n}{n}\right): C_{n}(\bar{x})=1$.

Intuition: Clumpiness is big if there are underpopulated OR overpopulated intervals. Note that $C_{n}(\bar{x})$ and $C_{n+1}(\bar{x})$ cannot both be perfectly evenly distributed.

Purpose: Study how evenly distributed an infinite sequence \bar{x} is. Weyl (1916) proved that \bar{x} is uniformly distributed ${ }^{1}$ is equivalent to $\lim _{n \rightarrow \infty} D_{n}(\bar{x})=0$. Used to generate 'quasirandom' sequences important in numerical analysis.

Theorem. [8] (pg 24) For any infinite sequence \bar{x}, the following holds for infinitely many $n: C_{n}(\bar{x})>c \ln n$, where ${ }^{2}$ $c=.120 \cdots$.

[^0]
A Surprising Result

Theorem. [13] The clumpiness of $\{i \rho\}_{i=1}^{n}$ equals the length of the support of $\nu(\rho, n, x)$.

The Proof is elementary and consists of three steps.
1: The symmetries on page 12 imply that

$$
\nu(\rho, n, x)=\nu(1-\rho, n, x)=\nu(\rho, n,-x)
$$

2: This discontinuities of $S(\rho, n, x)$ are at $\{-i \rho\}$. Re-label these as y_{i} in ascending order in $[0,1)$. Then express sup $S-$ $\min S$ in terms of the y_{i}.
3: Show that expression obtained equals the clumpiness. QED

$$
\begin{array}{cc}
\text { T H E } \\
& \text { S H A P E } \\
\nu\left(\rho, q_{n}, z\right)
\end{array} \quad \text { O F }
$$

Sums of Fractional Parts of $i \rho$

Proposition. [13] Let $\operatorname{gcd}(p, q)=1$ and set $d:=q \rho-p$. If $|d|<1 /(q-1)$, then

$$
\begin{aligned}
& \sum_{i=1}^{q}\{i \rho\}=\frac{(q+1) d+q-1}{2}-\lfloor d\rfloor \\
& \sum_{i=1}^{q}\lfloor i \rho\rfloor=\frac{(q+1) p-q+1}{2}+\lfloor d\rfloor
\end{aligned}
$$

Idea of Proof. $S(\rho, q, 0)$ can be given in two ways:
(1) $S\left(\frac{p}{q}, q, 0\right)=\sum_{i=1}^{q}\left\{i \frac{p}{q}\right\}=\sum_{i=1}^{q}\left\{\frac{i}{q}\right\}-1-\frac{q}{2}$.
(2) $S\left(\frac{p}{q}, q, 0\right)=q \cdot 0+\frac{q(q+1)}{2} \rho-\frac{q}{2}-\sum_{i=1}^{q}\left\lfloor i \frac{p}{q}\right\rfloor$.
(1) can be computed exactly.

Equate to (2) to get expression for $\sum_{i=1}^{q}\left\lfloor i \frac{p}{q}\right\rfloor$.
But this is equal to $\sum_{i=1}^{q}\lfloor i \rho\rfloor$ for ρ close to p / q.
Compute $\sum_{i=1}^{q} i \rho$.
The difference yields the proposition. QED
This result can now be leveraged to write the q branches of

$$
S(\rho, q, x)=q x+\frac{q(q+1) \rho-q}{2}-\sum_{i=1}^{q}\lfloor x+i \rho\rfloor
$$

explicitly.

Movement of the Branches

Let p / q a continued fraction denominator of ρ and $d:=q \rho-p$. Compute $S((p+t d) / q, q, x)$ when d small:

$$
q x+\frac{(q+1)(p+t d)-q}{2}-\sum_{i=1}^{q}\left\lfloor x+i \frac{p+t d}{q}\right\rfloor
$$

where t is going from 0 to 1 . See Figure. A, B, and C, are,
respectively, $\frac{(q+1) d}{2}, \frac{i_{+} d}{q}$, and $\frac{\left(q+1-2 i_{+}\right) d}{2}$.

As long as the j th branch satisfies: $S_{j}\left(x_{\text {left }}\right)<0$ and $S_{j}\left(x_{\text {right }}\right)>$ 0 , the number of inverse images of 0 equals q, ie: $\nu(0)=1$.

The Trapezoid Theorem

In analyzing this one sees that the reasoning is completely independent of p as long as it is a reduced residue modulo q. So set $\rho^{\prime}=\rho-\frac{p-1}{q} \approx 1 / q$:

$$
\nu(\rho, q, z)=\nu\left(\rho^{\prime}, q, z\right)
$$

Example of Trapezoid Theorem I

$\frac{23}{32}$ and $\frac{28}{39}$ are successive approximants of $e-2$.
$e-2-22 / 32=[32,2,18, \cdots]$.
The "2 interval thm" applies [12]: 31 short ones and 1 long.

Example of Trapezoid Theorem II

$\frac{23}{32}$ and $\frac{28}{39}$ are successive approximants of $e-2$.
$e-2-27 / 39=[38,2,1532, \cdots]$.
The "3 interval thm" applies [12]: 37 medium, 1 short, 1 long.

Bonus Theorem about Discrepancy

Bonus Theorem. For ρ, p, and q such that

$$
|d|=|q \rho-p|<1 /(q-1)
$$

the clumpiness (or q times the discrepancy) of $\{i \rho\}_{i=1}^{q}$ equals $1+(q-1)|d|$ (exactly).

Proof. Because the clumpiness equals the length of the support of ν (Theorem, page 17). QED

Idea. Let q_{n} be the continued fraction denominators of ρ. Figure out how the clumpiness of $\{i \rho\}_{i=1}^{q_{n}+q_{k}}$ with $k<n$ affects the length of the support of ν.

Then you may be able to derive precise upper bounds for the clumpiness (ie discrepancy) of $\{i \rho\}_{i=1}^{q_{n}+q_{k}}$ as $n \rightarrow \infty$. Generalizing that, and writing arbitrary n as sums of q_{n}, we may get the running max of the clumpiness of $\{i \rho\}_{i=1}^{j}$, for $j \in\left\{1, \cdots, q_{n}\right\}$. Note. Similar to what we do later with $S(i)$.

BIRKHOFF SUMS OF

THEMETALLICA

Key Result I

Definition. Fix a rot. number ρ, set $x=0$, and abbreviate

$$
S(n):=S(\rho, n, 0)=\sum_{i=1}^{n}\left(\{i \rho\}-\frac{1}{2}\right)
$$

- p_{n} / q_{n} are the cont'd fr. approximants of ρ.
- $d_{n}:=q_{n} \rho-p_{n}$.

Theorem. $S\left(q_{n}\right)=(-1)^{n} \frac{\left(q_{n}+1\right)\left|d_{n}\right|-1}{2}$
Proof. Subtract $q_{n} / 2$ from Prop. page 19, rework. QED
Note. We know $q_{n}\left|d_{n}\right|<\rho$ [12] (exerc. 6.12). So $S\left(q_{n}\right)>0$ if n odd, and $S\left(q_{n}\right)<0$ if n even.

See Figure below.
Black: $\{i \rho\}$ with $i \in\left\{1, \cdots, q_{n}\right\}$.
Then in red: $\{i \rho\}$ with $i \in\left\{q_{n}+1, \cdots, q_{n}+i\right\}$.

Red position $=$ black position $+\boldsymbol{d}_{\boldsymbol{n}}$. Sometimes various times over (if $a_{n+1}>1$).

Key Result II

Reasoning like that gives the next key result.
Theorem. For all i with $0 \leq i<\left(a_{n+1}-1\right) q_{n}+q_{n-1}$:

$$
S\left(q_{n}+i\right)=S\left(q_{n}\right)+S(i)+i d_{n} .
$$

The series $S(i)$ is "self-similar" by affine maps. Below we sketch the situation for the golden mean.

The Metallic Means

Definition. The metallic means are (for $a \in \mathbb{N}$)

$$
\rho_{a}:=[a, a, a, \cdots]=\sqrt{\frac{a^{2}}{4}+1}-\frac{a}{2}
$$

For a equal to 1, 2, and 3: 'golden', 'silver', and 'bronze'.
Lemma. For the metallic mean $\rho_{a}:=[a, a, a, \cdots]$, we have

$$
d_{n}=(-1)^{n} \rho_{a}^{n+1} \quad \text { and } \quad q_{n}=\frac{\rho_{a}^{-n-1}-\left(-\rho_{a}\right)^{n+1}}{\sqrt{a^{2}+4}}
$$

The plan: find \boldsymbol{M}_{n} : the max of S on $\left\{0,1 \cdots, q_{2 n+1}\right\}$. Then find \boldsymbol{m}_{n} : the min of S on $\left\{0,1 \cdots, q_{2 n+2}\right\}$.

This appears to determine constants $K_{a}>0$ so that $S\left(M_{n}\right)-K_{a} n$ and $S\left(m_{n}\right)+K_{a} n$ are bounded.

A Conjecture and Numerical Evidence

Recall: M_{n} is the max of S on $\left\{0,1 \cdots, q_{2 n+1}\right\}$, while \boldsymbol{m}_{n} is the \min of S on $\left\{0,1 \cdots, q_{2 n+2}\right\}$.

Conjecture. $\left|S\left(M_{n}\right)-K_{a} n\right|$ and $\left|S\left(m_{n}\right)+K_{a} n\right|$ are bounded
where $\quad K_{a}=\left\{\begin{array}{cc}\frac{a}{8} & a \text { even } \\ \frac{a\left(a^{2}+3\right)}{8\left(a^{2}+4\right)} & a \text { odd }\end{array}\right.$
Numerical Evidence. Compute K_{a} for $a \in\{1,2, \cdots, 16\}$. Check accuracy of computation: know $S\left(\boldsymbol{q}_{n}\right)$ exactly. Plot $\quad K_{a}-\frac{a\left(a^{2}+3\right)}{8\left(a^{2}+4\right)}$. See below.

Remarks

Observation: Since $\ln M_{n}=c_{a}+2 n \ln \rho$ where c_{a} is bounded, we can compute the following.

Corollary to Conjecture: $\lim \sup _{i} \frac{S(i)}{\ln i}=\zeta(a)$ and $\zeta(a)$ is plotted for even a is red, and odd a in green.

More specifically, for $a \in\{1, \cdots, 8\}, \zeta(a)$ equals:
0.1039043458
0.1418240820
0.1448629492
0.1731739099
0.1831704913
0.2062199841
0.2183653720
0.2386962361

PROOF OF THE

 CONJECTURE FOR

 CONJECTURE FOR
 \square

Data for the Silver Mean

We have proof of the conjecture for the golden and silver means and partial results for some other metallica. We outline the proof for the silver mean.

The silver mean ρ_{2} equals $\sqrt{2}-1$. Some convergents, starting with $\frac{p_{0}}{q_{0}}$

$$
0, \frac{1}{2}, \frac{2}{5}, \frac{5}{12}, \frac{12}{29}, \frac{29}{70}, \frac{70}{169}, \frac{169}{408}, \frac{408}{985}, \frac{985}{2378}, \frac{2378}{5741}
$$

Define M_{n} and m_{n} as $\left\{\begin{array}{l}M_{n}=\sum_{i=0}^{n-1} q_{2 i+1} \\ m_{n}=\sum_{i=0}^{n} q_{2 i}\end{array}\right.$. We list the first few, starting with M_{0}, and m_{0} :

$$
\begin{array}{r}
M_{n}=0,2,14,84,492,2870 \\
m_{n}=1,6,35,204,1189,6930
\end{array}
$$

Recall that

$$
d_{n}=(-1)^{n} \rho_{2}^{n+1} \quad \text { and } \quad q_{n}=\frac{\rho_{2}^{-n-1}-\left(-\rho_{2}\right)^{n+1}}{\sqrt{2^{2}+4}}
$$

$S(i)$ for the Silver Mean

$\frac{p_{n}}{q_{n}}=0, \frac{1}{2}, \frac{2}{5}, \frac{5}{12}, \frac{12}{29}, \frac{29}{70}, \frac{70}{169}, \frac{169}{408}, \frac{408}{985}, \cdots$
$M_{n}=0,2,14,84,492,2870, \cdots$
$m_{n}=1,6,35,204,1189,6930, \cdots$

First Part of the Proof

Proposition I. For M_{n} as defined, we have

$$
S\left(M_{n+1}\right)-S\left(M_{n}\right)=\frac{1}{4}\left(1-\rho^{4 n+4}\right)
$$

Idea of Proof. Since $M_{n+1}=q_{2 n+1}+M_{n}$, use Key Result II (pg 27) to see

$$
S\left(M_{n+1}\right)=S\left(q_{2 n+1}\right)+S\left(M_{n}\right)+M_{n} d_{2 n+1}
$$

So $\quad S\left(M_{n+1}\right)-S\left(q_{2 n+1}\right)=S\left(M_{n}\right)+M_{n} d_{2 n+1}$
Now use Lemma pg 29 to compute $S\left(q_{n}\right)$ and $M_{n} d_{2 n+1}$ in terms of ρ. QED

Warning. This sounds obvious, but remember you do not a priori know what the values M_{n} are.

Note. For the minima similar estimates work, because their definition is essentially the same.

Corollary. In fact,

$$
S\left(M_{n}\right)-\frac{n}{4}=\frac{-\rho^{4}}{4\left(1-\rho^{4}\right)}+O\left(\rho^{4 n}\right)
$$

Second Part of the Proof

Proposition II. $S\left(M_{n}\right)>S(i)$ for all i in $\left\{0,1,2, \cdots, q_{2 n+1}-\right.$ 1\} (except when $i=M_{n}$).

Main Steps of Proof. Step 1. Define M_{i} as in part I. Use Key Result II to show by induction that

$$
S\left(\rho, M_{n}, 0\right)>S(\rho, i, 0) \quad \text { for all } \quad 0 \leq i<q_{2 n-1} .
$$

Step 2. Connect the points $\left(M_{i-1}, S\left(M_{i-1}\right)\right)$ and $\left(M_{i}, S\left(M_{i}\right)\right)$ by a segment ℓ_{i} (see figure). Show that the image under $\Phi_{2 n-1}$ of ℓ_{n-1} is increasing for all n. QED

Note. Again, the computation is the same for the minima.

A P P E N DIX MORE PICTURES

The Golden Mean

First $i \in\{1, \cdots 100\}$, then $i \in\left\{1, \cdots 10^{5}\right\}$.

The Metallic-5 Mean

First $i \in\{1, \cdots 100\}$, then $i \in\left\{1, \cdots 10^{5}\right\}$.

References

[1] T. Van Aardenne-Ehrenfest, Proof of the Impossibility of a Just Distribution of an Infinite Sequence of Points Over an Interval, Indag. Math. 7, 71-76, 1945. And: On the Impossibility of a Just Distribution, indag. Math. 11, 264-269, 1949.
[2] A. Bountis, J. J. P. Veerman, F. Vivaldi, Cauchy distributions for the integrable standard map, Physics Letters A 384, Issue 26, 2020, 126659.
[3] Y. Bugeaud, Distribution Modulo One and Diophantine Approximation, Cambridge University Press, 2012.
[4] J. G. Van der Corput, C. Pisot, Sur la Discrépance Modulo Un, Indag. Math. 1, 143-153, 184-195, 260-269, 1939.
[5] H. Kesten, On a conjecture of Erdös and Szüsz related to uniform distribution mod 1, Acta Arith. 12 (1966/1967) 193-212.
[6] O. Knill, F. M. Tangerman, Self-similarity and growth in Birkhoff sums for the golden rotation, Nonlinearity, 24(11): 3115-3127, 2011.
[7] L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, John Wiley \& Sons, New york, 1974.
[8] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, 63, Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
[9] D. Ralston, ??? ? ???.
[10] W. H. Schmidt, Irregularities of Distribution. VII, Acta Arith. 21, 45-50, 1972.
[11] O. Strauch, S. Porubský, Distribution of Sequences: A Sampler, Electronic revised version by Peter Lang, 2018, https://www.mat.savba.sk/musav/O_Strauch-S_Poru
[12] J. J. P. Veerman, Numbers from all Angles, Portland State University Lecture Notes, 2023.
[13] J. J. P. Veerman e.a., On Birkhoff Sums, in preparation, 2024.
[14] J. J. P. Veerman, L. S. Fox, Statistics of Certain 1-D Maps, Portland State University preprint, 2019.
[15] J. J. P. Veerman, L. S. Fox, P. J. Oberly, A Remarkable Summation Formula, Lattice Tilings, and Fluctuations, The American Mathematical Monthly, 2022.
[16] J. J. P. Veerman, P. Oberly, L. S. Fox, Statistics for a Family of Piecewise Linear Maps, Physica D, Vol 427, 133019, 2021.

[^0]: ${ }^{1}$ Means that every interval has the right amount of points 'in the limit'. ${ }^{2}$ To be precise, $c=\max _{x>3} \frac{x-2}{4(x-1) \ln x}$.

